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Abstract. This paper describes a system to extract salient regions from an out-
door image and match them against a database of previously acquired land-
marks. Region saliency is based mainly on color contrast, although intensity
and texture orientation are also taken into account. Remarkably, color con-
stancy is embedded in the saliency detection process through a novel color-
ratio algorithm that makes the system robust to illumination changes, so com-
mon in outdoor environments. A region is characterized by a combination of its
saliency and its color distribution in chromaticity space. The newly acquired
landmarks are compared with those already stored in a database, through a
quadratic distance metric of their characterizations. Experimentation with a da-
tabase containing 68 natural landmarks acquired with the system yielded good
recognition results, in terms of both recall and rank indices. However, the dis-
crimination between landmarks should be improved to avoid false positives, as
suggested by the low precision index.

1. Introduction

The extraction of reliable visual landmarks in outdoor unstructured environments is
still an open research problem. Our motivation for working on it comes from robot
navigation, but the main issues concern also other fields, such as scene analysis and
image indexing and retrieval from databases. Most existing feature extraction ap-
proaches are not adequate for this type of environments, since they rely on either
structured information from non-deformable objects [3, 8], or a priori knowledge
about the landmarks [1].

We have been pursuing a saliency-based approach to spot image regions with po-
tential to represent good landmarks [13, 14], following biologically-inspired works on
visual attention [7]. In [14], we introduced a way to embed color constancy within sa-
liency computation, which showed to be faster and more stable than ensuring such
constancy at a pre-processing stage. The present work builds on these previous stud-
ies to accomplish the next step, namely landmark characterization to support subse-
quent recognition under different illumination conditions and viewpoints.



II. Saliency detection based on color contrast

A region in an image is considered salient if it ranks high in a given feature and its
surround ranks high in the opposite feature. The color features considered are based
on the opponent colors proposed by Hering [9].

From the input image, Gaussian pyramids corresponding to intensity, orientation
and color opponency images are constructed, each with eight spatial scales. A pixel at
a fine scale corresponds to a center region, whereas the respective pixel at a coarser
scale corresponds to its surround. This multiscale approach is advantageous in that it
permits extracting landmarks of varied sizes.

Three sets of partial saliency maps are constructed, corresponding to the intensity,
color and orientation features. The partial saliency maps should be combined to ob-
tain one global saliency map. They cannot simply be added, because salient regions
present in only a few maps can be masked by noise or less salient regions present in a
larger number of maps. The process of combining the partial saliency maps is struc-
tured in two stages. In the first stage, the partial saliency maps are normalized by the
maximum saliency value obtained at all center-surround scales. In the second stage,
the maps are weighted by their information content. The information content of an
image is based on their zero-order entropy [11]. Finally, the partial saliency maps are
subject to exponentiation and added to compose the global saliency map.

The modifications introduced to the original visual saliency algorithm [7], to im-
prove the color constancy properties, resulted in the color-ratio visual saliency algo-
rithm [14], described next.

With the purpose of obtaining contour images with good color constancy proper-
ties, Gevers and Smeulders [5] developed a color space based on the color ratio be-
tween neighboring pixels. This differential version of color constancy gave us the
idea of generalizing the concept of gradient between neighboring pixels to that of
center-surround opposition. Thus, invariance of color gradients would turn into the
desired invariance of center-surround oppositions. Under this approach, one pixel is
replaced by the center region and the other pixel by the surround region. Moreover,
the ratios no longer relate color bands, but color opponents, as follows:
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where R’ and G’ are opponent red and green components at center regions and R’
and G are opponent red and green at surround regions. The same is valid for the yel-
low and blue components. According to the unichromatic reflection model, assuming
that center and surround regions have a locally constant illuminant, the same surface
normal and uniform albedo, and the use of narrow-band sensors, we have [14]:
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where C is the light sensor response corresponding to a surface patch illuminated by
an incident light e(4), A4 is the light wavelength, m, is the body geometric dependency,
fi is the surface normal, § is the direction of illumination source, and ¢,(A) is the
body spectral reflection property. Combining (3) and (1), we have:
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which is only dependent on the sensors and the surface albedo. The same can be done
for Equation (2) and the blue-yellow components. A key feature of these color ratios
is their invariance to both intensity and color normalizations, which makes them in-
trinsically invariant to lighting intensity and illumination color changes. The ratios
have a local nature, avoiding the distorting effects possibly introduced by global nor-
malizations. The logarithmic spaces (R /G,) and (Y,/B)) permit the computation of the
ratio opponencies by simple differences of logarithms across the scales.

III. Delimiting Landmark Regions

Since the extracted salient regions are not necessarily bounded by well-defined con-
tours, nor associated to single elements in the scenes, a refinement step is necessary in
the process of determining the boundaries of landmark candidates. As an initial ap-
proximation (Figure 1), a minimal rectangular bounding box (Figure 2) is computed
for each segmented saliency spot. The objective of the next two processing steps is to
get a better fitting of the bounding boxes to the salient features.
In the next step, the colors appearing in each saliency-selected region are identified,
and a corresponding backprojection map is built, emphasizing where the same colors
appear in the whole image. This is performed using histogram backprojection [12].
After this, the size and position of all bounding boxes are adjusted (Figure 2), tak-
ing into account the color feature spatial distribution and the respective visual sali-
ency. This is achieved using the continuously adaptive mean shift algorithm [2]. This
is a non-parametric technique that climbs the gradient of a probability distribution to
find the nearest dominant mode, with the capability to adapt the window size. To in-
crease the amount of information associated with the bounding boxes, their immedi-
ate surrounding region is also analyzed (Figure 2), giving additional context informa-
tion to the recognition process.

IV. Landmark Characterization

After the determination of the bounding boxes, region descriptors are extracted.
These descriptors should be appropriate to characterize the bounding boxes as signa-
tures of the landmarks and should make the comparison between them possible. Color
has proven to be the most suitable of the considered low-level features for outdoor



unstructured environments, where most objects have deformable shapes. The way
color features are represented and color descriptions are compared using the adopted
representation are described below.
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Fig. 1. The process of delimiting the landmark regions. From the source image a saliency map
is computed, then this map is segmented, generating the seeds of the landmark regions. These
seeds are enclosed by bounding boxes, which are adjusted to the salient elements in the image
using color histogram backprojection and mean-shift algorithms. Finally, the landmark bound-
ing boxes are expanded, encompassing the immediate surrounding regions.

Fig. 2. Initial (left), adjusted (center) and expanded (right) landmark bounding boxes.

The most common representation of color in image retrieval and recognition is the
color histogram, which captures the global color distribution in an image or region
[12, 6]. They are simple to compute and have the properties of invariance to transla-
tion, invariance to rotation about an axis perpendicular to the image, and they change
smoothly with rotation about other axes, occlusion, and variations in scale. In order to



remove the dependency on the number of pixels that comprise the histogram by com-
paring histograms of images of different sizes, the histogram can be normalized by
dividing each bin count by the total number of pixels. The normalized histogram cor-
responds to a color probability distribution function.

Taking this considerations into account, the following descriptors to characterize
the landmarks were proposed:

1. Normalized chromaticity histogram of salient region inside bounding box.

Normalized chromaticity histogram of adjusted bounding box.
Normalized chromaticity histogram of expanded bounding box.
Normalized saliency histogram of adjusted bounding box
Mean saliency of adjusted bounding box.

Nk v

V. Landmark Matching

Once the feature representation has been defined as a histogram space, the similarity
between two images or regions i and j is described as the distance between their cor-
responding points /2, and £, in the histogram space [12].

There are several metrics to evaluate histogram distances. The most common are
histogram intersection and Minkowski distances [12]. These distance metrics are
quick to compute, but they only compare corresponding bins of the two histograms,
disregarding any kind of similarity between colors. This characteristic makes these
distance metrics strongly sensitive to slight changes in the distributions. In contrast
with Minkowski and intersection distances, the quadratic form metric allows for simi-
larity matching between different colors, and it is defined as follows [6]:
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where h, and h, are N-dimensional color histograms, and A is the similarity matrix,
whose elements @, denote similarity between bins i and j. The similarity of landmarks
is evaluated with quadratic-form distance by combining the distances between each of
the three color histograms stored in the landmark representation. The distances are
combined using the root of the sum of the three squared distances.

VI. Experimental Results

From eleven sample scenes in outdoors, 68 landmarks were extracted. To evaluate the
retrieval performance of the system, each landmark was taken out of the database,
and matched against all other landmarks. Then, the distances to all other landmarks
were sorted in ascending order. In image retrieval systems, the quality of matching is
usually qualified in terms of recall and precision figures [4]. Recall is defined as the
ratio between the number of relevant images retrieved and the number of all relevant



images in the database. Precision is defined as the ratio between the number of rele-
vant images retrieved and the number of retrieved images.

Recall=C, I M , Precision=C, | K (6)

where K is the number of retrievals, C, is the number of relevant matches among all
the K retrievals, and M is the number of total number of relevant matches in the data-
base. Another metrics used to quantify the performance of a retrieval system is the
success of target search index (STS). It measures the rank of the first retrieved rele-
vant image (target) in the database with respect to the query, defined as [10]:
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where rank is the retrieval position of the first retrieved image, and N is the number
of images in the database.

The recall score (Table 1) obtained was acceptable, considering that the recogni-
tion was based solely on color distribution information. This recall score indicates
few false negative errors. Also the rank of the first (best) retrieved similar landmark
was very significant, with the STS score near one. The precision score obtained is
low, indicating the presence of false positives in the retrieval process. This occurs due
to the similar color distributions of some detected salient features in different scenes,
and since histograms do not provide spatial information about their arrangement, very
different images can have similar color distributions, that could mislead into false
evaluation of their dissimilarity.

The combined distance form (squared sum of the three region type distances) im-
proves significantly the recall and precision metrics, because of the union of saliency-
oriented information with surround information.

Table 1. Recall, STS and precision for the described landmark matching experiment. Resultant
measures are shown for each region type individually, and then for a combined form of them.

Recall STS Precision

Spot of saliency bounding box 0.62 098 0.24

Adjusted bounding box 0.60 0.99 0.21
Expanded bounding box 0.53 098 0.17
Combined histograms 0.70 099 0.26

The computational time of the main tasks (Table 2) were evaluated using a stan-
dard PC computer (Pentium III 900MHz, 256Mb DRAM, Microsoft Windows XP). It
can be observed that the saliency detection is the task that demands more computa-
tional time, and that the histograms are computed very quickly. In the landmark com-
parison phase, although the quadratic-form histogram distances could take a lot of



time to be computed, the small size of the histograms (16x16 bins) keeps computa-
tional time low for this task.

Table 2. Computational complexity and execution times of the main tasks related to landmark
characterization and matching. N is the number of pixels in the input image and M is the
number of bins in the histograms. Data is shown with two significant digits.

Task Computational Seconds
complexity

Visual saliency with color ratios (512x512 pixels) O(N) 0.81

256-bin histogram (16x16 bins) O(N) 0.00015

Landmark characterization O(N+M) 0.039

Quadratic-form histogram distance OoM) 0.0085

Landmark matching OoM) 0.028

VII. Discussion

In a pioneering work on image indexing, Swain and Ballard [12] pointed out that, for
real-time object recognition, color-based algorithms were especially promising, due
to their fast performance and their capability to deal with viewpoint changes, object
deformations, and inaccurate segmentation. They considered a challenging problem
to identify the region from which to extract the histogram to be used as object signa-
ture for recognition purposes.

This is exactly the first contribution of the current research, proposing a novel sali-
ency detection algorithm with embedded color constancy properties, and using this
information to identify and delimit image regions that can be used as landmarks.

A second contribution is the landmark characterization that, going beyond the sin-
gle histogram, combines saliency and chromaticity into a robust and stable signature,
as confirmed by experimentation.

Indeed, the results show good recognition performance, in terms of both recall and
rank indices. However, the discrimination between landmarks requires improvement
to avoid false positive mistakes, i.e., retrieving landmarks from the database that do
not correspond to the query landmark. This shortcoming is not a critical one in our
application, since a rough knowledge of the robot trajectory can help to disambiguate
between landmarks with similar appearance.
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