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Abstract 
 
This work presents a landmark detection system for a 

walking robot, which has to operate in unknown 
unstructured outdoor environments. Most landmark 
detection approaches are not adequate for this 
application, since they rely on either structured 
information or a priori knowledge about the landmarks. 
Instead, the proposed system makes use of visual saliency 
concepts stemming from studies of animal and human 
perception. Thus, biologically-inspired opponent features 
(in color and orientation) are searched for at different 
resolution levels. The implementation, however, does not 
try to mimic nature, but rather to be as computationally 
efficient as possible. Thus, salient image regions ranging 
from relatively small to big sizes are detected using 
multiscale comparison techniques, based on pyramidal 
filtering. The experimental results obtained show that 
visual saliency permits detecting reliable natural 
landmarks without a priori knowledge about their 
characteristics or location. 

 
1. Introduction 
 

This work deals with the problem of detecting natural 
visual landmarks in outdoor environments. Natural 
landmarks are objects or patterns already present in the 
environment that can be used as reference marks to 
identify places in the world, like trees in a field, rocks, 
and buildings. In opposition to them, artificial landmarks 
are those inserted deliberately in the environment to serve 
as reference marks, such as bar code signs, radio bacons, 
and geometrical figures. 

When dealing with visual landmarks in outdoor 
environments, color and texture are two of the most 
important features, since they are adequate to characterize 
unstructured forms [21]. The main difficulty in their 
utilization as recognition features is that the visual 
information acquired is strongly dependent on the 

intensity, direction, and spectral power distribution of the 
illumination, which change with sun position and 
atmospheric condition [22], [9]. 

In order to increase robustness to these adverse 
conditions, the original Red, Green, and Blue (RGB) color 
components are often transformed to another color space, 
like the normalized color space (chromaticity 
coordinates), which is decoupled from the luminance, or 
the Hue, Intensity and Saturation (HIS), well-suited to 
human perception representation [22], [17]. 

Additionally to the illumination dependency of color 
perception, the robot position and orientation at the 
observation time influence the visibility, distance, and 
orientation of the landmarks relative to the robot. Since 
for mobile robots these conditions are not fixed along 
time, it is desirable to deal with features as independent as 
possible from the robot's movements, in order to achieve 
robust landmark recognition.  

Most published works on visual landmark-based 
navigation are related to indoor environments (e.g., [7], 
[14], [8], [20], [6]), which have controlled illumination 
and structured or artificial landmarks available.  

In outdoor environments, the existence of a priori 
maps with the landmark locations is frequently assumed, 
as well as the availability of landmark models. Nasr and 
Bhanu [15] use model-based vision, assuming explicit 
knowledge about the maps, 3-D models of landmarks and 
a camera model. They adopt several features for the 
landmark descriptions, some range-dependent, such as 
size, length, and width, and others range-independent, 
like color, perimeter squared over area, length over width, 
and shape. Talluri and Aggarval [19] use the horizon line 
contour as landmark, matching the detected contours 
against a known map. Cozman [3] also works with the 
horizon line, but instead of recognizing contours he uses 
mountain peaks as landmarks. Evans, Smith and Lucas 
[4] use a priori models of the landmarks, which are 
identified by their color, texture and shape features. 
Takeuchi and Herbert [18] use normalized red color 
distribution, vertical and horizontal edges, and texture of 



images in urban areas to characterize buildings, that are 
taken as landmarks. Zheng, Barth and Tsuji [23] detect 
landmarks along the borders of a route, based on the 
contrasts of the color and intensity features. 

It can be observed that the reported landmark 
characterization methods for outdoor environments 
usually rely on a priori models. Instead of following this 
approach, this work proposes the usage of visual saliency 
techniques to select good landmark candidates in the 
images, without a priori knowledge about the landmarks. 
The presented visual saliency is based on multiscale 
opponent features, obtained from intensity, color and 
texture characteristics. 

 
2. Visual saliency 
 

In the case where there is no a priori knowledge of 
what things in the scenes will be used as landmarks, some 
criterion is needed to decide what regions in the images 
could be considered as representing potential landmarks. 

Recent theories in active and purposive vision indicate 
that potential landmark locations could be detected using 
a visual attention mechanism. It has also been observed 
that when human perceivers are trying to build or recover 
the description of a scene, their attention is focused on 
certain relevant regions in the scene [10], [11]. 

One important concept in visual attention is the 
saliency map. This map represents the regions of the 
image corresponding to distinctive areas with large 
values, whereas the non-distinctive regions are indicated 
by small values. Usually a saliency map is constructed 
from a linear combination of a set of features, which is 
application dependent. In addition, the use of a visual 
attention mechanism bypasses the task of image 
segmentation for object delineation, which does not 
always produce accurate results [20]. 

Two interesting works on visual attention that intend 
to model and predict human visual search performance in 
color images are presented by Itti, Koch, and Niebur [12] 
and Fernandez-Vidal et al. [5]. Their systems build 
topographical saliency maps from a combination of 
multiscale image features; specifically, intensity, 
opponent colors and orientation. Contrarily to these 
works, the landmark detection system here described does 
not attempt to emulate human visual search mechanisms, 
but, inspired by their approach, uses the same concept of 
saliency maps to locate good landmark candidates. 

 
3. The landmark detection system 

 
Each acquired color image has resolution of 512x384 

pixels and is represented in conventional camera RGB 
space, with 24 bits per pixel (8 bits for each channel 
RGB). The landmark detection system computes the 

visual saliencies based on the opponency of intensities, 
colors and main orientations present in the images. 

Inspired on biological models of vision [1], the 
detection of the visual saliencies is made through the 
computation of center-surround differences, i.e., 
comparing regions of the visual field with their respective 
neighborhoods. For the intensity feature the bright-dark 
opponency is considered, meaning that dark centers with 
bright surrounds or bright centers with dark surrounds are 
salient. For the color features, red centers with green 
surrounds, or green centers with red surrounds are 
considered salient; the same concept is valid for the blue-
yellow color pair. Finally, the local orientation features 
are computed using Gabor filters, oriented at four 
different angles, 0°, 45°, 90° and 135°. For all considered 
features, the greater is the contrast between the center and 
surround regions, the greater is the correspondent 
saliency. 

Considering that in outdoor environments the intensity 
of the illumination can change substantially along time, 
altering the color perception of the objects in the RGB 
space, it is convenient to decouple the color information 
from the illumination intensity. This is achieved 
converting the image representation from the RGB space 
to rgb chromaticity space [22]. 

To compute the desired color opponencies it is 
necessary to convert the rgb space to another space which 
gets full response for the saturated colors red, green, blue, 
and yellow (R´, G´, B´, Y´). Following the proposal 
presented in [12], this color space is calculated by 

The orientation features are computed on the 
monochromatic intensity image obtained at the beginning 
of the processing of each image. For each orientation, an 
efficient Gabor filtered approximation is computed using 
a convolution with 11-tap filter masks [16]. 

Each feature (intensity, opponent colors, and 
orientations) is represented in nine spatial scales, through 
the use of Gaussian pyramids [2]. In these pyramids, each 
level is obtained by a low-pass filtering operation on the 
preceding level, followed by a subsampling of factor two 
in each dimension. All pixels at any level have equal 
contribution to the subsequent level. The center-surround 
differences are computed by the comparison between fine 
and coarse scales of the pyramids, as presented in [12]. 
The center corresponds to a feature at a fine scale, and the 
surround corresponds to a feature at a coarse scale, 
represented with lower resolution. Figure 1 shows the 
multiresolution pyramid for the intensity feature, with 
each level expanded to the size of the first level, in order 
to facilitate the comparison procedure. It is possible to 
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observe the center-surround characteristic for pixels 
corresponding to the same location, but situated in 
different pyramid levels. 
 

 
Figure 1. Multiresolution Gaussian pyramid 

 
The low-pass filtering is speeded up taking advantage 

of the Gaussian filters separability, using a double 
convolution with a 1-D mask [13]. An important property 
of the pyramid implementation is that it allows multiscale 
opponent computations. By comparing centers and 
surrounds located at high-resolution levels, visual 
saliencies of relative small targets are found, while 
operating with lower resolution levels permits finding 
relatively large salient regions. With this technique, it is 
possible to detect visual salient objects within a wide size 
range, e.g., from small trees to big mountains. 

The computation of center-surround differences for the 
intensity, opponent colors and orientation features at each 
scale combination results in several partial visual saliency 
maps. These maps are normalized by their local maxima 
and then combined into a global visual saliency map. The 
resulting global saliency map has the cues to identify 
potential landmarks. The image regions corresponding to 
these potential landmarks are then analyzed with the 
objective of obtaining visual signatures, capable of 
identifying them as an existing or a new landmark.  

 
4. Results 

 
All image-processing operations have been 

implemented using the Matrox Imaging Library (MIL) 
version 5.0, in Windows 95 environment. The 
performance tests were evaluated using an Intel 
Pentium MMX, 200MHz PC, with 80Mb of DRAM. 
Superior microprocessor types were not considered for 
the tests due to the interest of using this system in a 
mobile robot, equipped with an easily available off-the-
shelf PC/104 computer. The following figures illustrate 
an example of landmark detection performed by the 
system. Figure 2 shows an image acquired by the robot, 

and, in Figure 3, salient regions are indicated. Note that 
candidate landmarks are found in the most informative 
areas, namely ground-sky separation and, especially, the 
rock pattern at the left, which is undoubtedly the most 
distinctive feature in the image.  

 

 
Figure 2. Original image acquired by the robot 

 

 
Figure 3. Resultant landmark candidates 

 
The complete processing of each image takes 18 

seconds. The observed bottleneck is the computation of 
the center-surround differences, which is executed at six 
different scales for each opponent feature (red-green, 
blue-yellow, intensity, and four orientations). Although 
the experimental computation time is compatible with the 
movement speed of a walking robot, this performance can 
be improved with some adaptive opponent feature 
selection, avoiding the overhead of considering features 
not so relevant in the current environment of the robot. 
 
5. Conclusions 
 

Based on the present results, it seems promising that a 
multiscale opponent feature mechanism can be used to 
detect good candidates for landmarks in outdoor 



environments, avoiding an exhaustive search in the 
images, in a way independent of predefined models. The 
main contribution of this work is to apply the visual 
saliency concepts to natural landmark detection, without 
an a priori knowledge of the landmarks characteristics. 

The main practical problems detected with the 
experiments are related to the presence of large landscape 
elements (e.g., rivers, roads), that although may be 
visually salient, cannot always be used as punctual 
landmarks because they do not identify a unique location 
or orientation in space. The idea to solve this problem is 
to characterize the elements with a measure of their 
texture uniformity, which can provide some indication 
about the spatial distribution of each element. Also it is 
necessary to include in the system a sky elimination 
procedure, necessary to avoid considering clouds as 
landmark candidates. Finally, saliencies at the borders of 
the images are not reliable, due to the lack of data to 
compute the filter convolutions and surround information. 

The selected color space of chromaticity coordinates 
has proven to be robust in front of illumination intensity 
changes, as desired. However, this color representation is 
affected by the spectral power distribution (SPD) of the 
light source. Since in outdoor environments there is a 
significant variation in the SPD according to the sun 
position (direct sunlight has more blue components than 
sunset light), experiments with alternative color spaces 
more robust to SPD changes will be considered in future 
work. Gevers and Smeulders [9] propose an interesting 
color space with this characteristic, where a logarithmic 
color ratio is computed between neighboring pixels, 
resulting in a transformation of the image independent of 
the illumination intensity and SPD. 
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