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The mainstream approach to estimate epipolar geometry from two views requires matching the projec-
tions of at least four non-coplanar points in the scene, assuming a full projective camera model. Our work
deviates from this in three respects: affine camera, planar scene and active contour tracking. A B-spline is
fitted to a planar contour, which is tracked using a Kalman filter. The corresponding control points are
used to compute the affine transformation between images. We prove that the affine epipolar direction
can be computed as one of the eigenvectors of this affine transformation, provided camera motion is free
of cyclorotation. A Staübli robot is used to obtain calibrated image streams, which are used as ground
truth to evaluate the performance of the method, and to test its limiting conditions in practice. The fact
that our method and the gold standard algorithm produce comparable results shows the potential of our
proposal.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Recovering camera motion and scene structure from image
streams is an important task in a range of applications including
robot navigation and manipulation. As a basic step underlying this
task, extensive work has been devoted in the last decade to esti-
mating epipolar geometry from two views. The methods proposed
address different versions of the problem depending on: (a) the
camera model they assume, (b) the types of scenes to which they
apply, and (c) how visual motion is measured on the image plane.

The present work addresses epipolar estimation for an affine
camera viewing a planar scene, and using active contours to mea-
sure visual motion within images. Below we discuss each of these
three options in turn.

The camera model relates visual motion on the image plane to
3D camera motion. Depending on the viewing conditions, different
camera models have been used to emulate the imaging process
[2,3]. The full perspective model (the pinhole camera), in either
its calibrated (perspective camera) or uncalibrated (projective
camera) versions, has proved to be too general when perspective
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effects diminish. Under weak-perspective viewing conditions
(small field of view, or small depth variation in the scene along
the line of sight compared to its average distance from the camera),
simplified camera models, such as orthographic, scaled-ortho-
graphic or their generalization for the uncalibrated case, the affine
camera model, provide an advantageous approximation to the pin-
hole camera, which avoids computing ill-conditioned parameters
by explicitly incorporating the ambiguities due to weak perspec-
tive into the model.

Epipolar geometry estimation under affine assumption has re-
ceived a lot of attention in literature [4–6]. However, most of the
known methods assume that:

(1) the scene contains depth information, and thus the algo-
rithms fail when the scene configuration approaches a pla-
nar structure. For instance, our experimentation with the
gold standard algorithm (see Section 4) shows that the relief
of the target object should be of the same order of magni-
tude as the object length/width in order to obtain acceptable
results; and

(2) the scene is textured enough to allow visual motion estima-
tion from point correspondences.

Our work explores an alternative approach applicable when
these two assumptions do not hold.

Previous attempts at eluding assumption (1), and thus estimat-
ing epipolar geometry from a dominant plane, have all used a full-
perspective camera. It is well known that two views of a plane are
related by a collineation under full perspective projection. Several
authors have used this fact to propose algorithms for camera
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Fig. 1. Affine projection compared to the (full) perspective projection and the ort-
hographic camera models. Affine projections (and in particular, a weak-perspective
projection) give a better approximation to the perspective projection than the other
simplified model, the orthographic camera. In the affine camera model, a parallel
projection is made onto the average depth plane, prior to an overall perspective
projection (scaling). For example, in the paraperspective model, this projection is in
the direction parallel to the perspective projection of the target centroid. However,
in the weak-perspective model, the parallel projection onto the average depth plane
is made in a direction perpendicular to the image plane. Under the condition that
the target is seen with a small field of view, these two fixed directions of parallel
projection give a good approximation for all the points of the target, compared to
the orthographic camera model.
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calibration [7], self-calibration [8,9], or extraction of structure and
motion from uncalibrated views of points on planes [10–12]. How-
ever, when perspective effects diminish, the relationship between
two views of a planar structure becomes an affinity, which invali-
dates the methods based on collineations. To the best of our
knowledge, there are no previous works eluding assumption (1)
under affine viewing.

Concerning assumption (2), we estimate the visual motion be-
tween two views using active contours, thus being able to handle
poorly textured scenes. The affinity relating two views, which we
obtain from the tracking of a planar contour, is theoretically equiv-
alent to that resulting from three point matches. However, as men-
tioned, our method eludes assumption (2), and benefits also from
other advantages of active contours, such as their robustness to
occlusions and noise, as well as the simplicity of the tracking pro-
cedure, avoiding point matching.

Using results in projective geometry, we show that, under a 3D
motion free of cyclorotation, the epipolar direction can be recov-
ered by relating the two affine views of a planar contour. To vali-
date the theoretical proofs and to test their limiting conditions
(relaxation of weak perspective, effects of cyclorotation and noise),
a series of experiments has been performed. This testing is not
aimed at a particular application at this stage, since we view the
results of this paper as a necessary step towards the recovery of
other motion and structure information (such as plane orientation)
from three affine views of a planar object.

The paper is organized as follows. Section 2 contains the ana-
lytic study of two weak-perspective views and provides the basis
for the recovery of the epipolar direction. Section 3 explains how
the parameters of the affinity relating the two views are extracted
in our implementation, based on a contour tracker. Section 4 is de-
voted to experimentation, using both synthetic and real image
streams. Finally, Section 5 summarizes our contribution. Further-
more, Appendix A contains a geometric proof of our main contribu-
tion in Section 2, whereas Appendix B contains a generalization to
two affine views.

2. Analytic study of two weak-perspective views

2.1. The camera model

A weak-perspective (or scaled-orthographic) camera w projects
a scene point first orthographically onto the average depth plane
RC (the plane parallel to the image plane R containing the centroid
C of the scene object) and then perspectively from this fronto-par-
allel plane RC onto the image R (Fig. 1). Thus the second perspec-
tive projection (of proper optical center, say P) simply introduces a
scale factor. Modulo this scale factor, the weak-perspective camera
is an orthographic camera: all the projection rays are parallel with
direction orthogonal to the image plane R.

Let an affine world frame w associated to the weak-perspective
camera be chosen as follows: take any affine coordinate frame in
the image plane R, and add to it an orthogonal vector to R in order
to obtain a global affine world frame. In these frames, the x and y
image coordinates coincide with the X and Y world coordinates,
respectively, and the Z coordinate coincides with the viewing
direction, and thus the weak-perspective projection is given by

x

y

� �
¼ f

Zave

X

Y

� �
; ð1Þ

where f is the focal length, and Zave is the average distance of the ob-
ject from the camera (that is, the plane RC has equation Z = Zave).
When the depth variation of the object is small compared to Zave,
and the principal point is close to the centroid of the projected
object, then the weak-perspective camera model gives an approxi-
mation of the perspective projection [13].
We assume that the scene object is stationary and that the cam-
era translates by T and rotates by R around the object, and possibly
zooms, thus giving a second weak-perspective camera w0. The new
affine coordinate frames associated with the second camera are gi-
ven by the rows of R and the new origin lies at �R>T, thus w0 has
the expression

x0

y0

� �
¼ f 0

Z0ave

X0

Y 0

� �
; ð2Þ

where [X0,Y0,Z0]> = R[X,Y,Z]> + T, f0 is the new focal length, and Z0ave is
the average distance to the object from the second camera.

Consider the equation a X + b Y + c = Z of a world plane S. Then
the two views of the coplanar scene are related by the affinity gi-
ven by

x0

y0

� �
¼M

x
y

� �
þ t; ð3Þ

with

M ¼ s
f 0

f
R1;1 þ aR1;3 R1;2 þ bR1;3

R2;1 þ aR2;3 R2;2 þ bR2;3

� �
; ð4Þ

t ¼ f 0

Z0ave

Tx þ cR1;3

Ty þ cR2;3

� �
; ð5Þ

and where s = Zave/Z0ave is the scale factor that accounts for depth
variation (s > 1 if the second camera approaches the scene object,
and s < 1 if it departs from it), and Ri,j are the elements of the rota-
tion matrix R.

A direction v = [x,y]> of the first image R is mapped by the
above affinity to the direction Mv of the second image R0. Since
the affine references chosen in the two cameras match by the dis-
placement, we can superpose the two images and it has sense to
consider directions invariant by M.

2.2. Recovery of the epipolar direction

Consider an orthonormal coordinate frame associated to the
first image (for instance, normalized pixel coordinates, when
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aspect ratio and skew are known). The rotation matrix about the
unit axis [cosa,sin a,0]> and angle q has the form

R¼
ð1�cosqÞcos2 aþcosq cosasinað1�cosqÞ sinasinq

cosasinað1�cosqÞ ð1�cosqÞsin2 aþcosq �cosasinq

�sinasinq cosasinq cosq

2
64

3
75:
ð6Þ

Hence, the matrix M is

M ¼ s
f 0

f

ð1� cos qÞ cos2 a cos a sin að1� cos qÞ
þ cos qþ a sin a sin q þb sin a sin q

cos a sin að1� cos qÞ ð1� cos qÞ sin2 a

�a cos a sin q þ cos q� b cos a sin q

2
6666664

3
7777775; ð7Þ

where a = [cosa,sina]> is the direction of the rotation axis. The
orthogonal vector e = [�sina,cosa]> = a\ is the epipolar direction.
A straightforward computation shows that

Me ¼ s
f 0

f
ðcos qþ sin qða sin a� b cos aÞÞe; ð8Þ

thus giving an analytic proof of the following result:

Theorem 1. If the rigid motion between two weak-perspective
cameras is assumed to be free of cyclorotation, then the epipolar
direction e can be recovered as one of the two eigenvectors of the
vectorial part M of the affinity that relates two views of a planar scene.

As a consequence, the direction a = e\ of the axis of rotation can
also be recovered.

Fig. 2 illustrates the above result. Two views R and R0 of a pla-
nar H-shaped object are shown, which are related by a rotation
about an axis parallel to the image plane (i.e., free of cyclorotation).
For simplicity of illustration, a basis {r1,r2} is chosen aligned with
the main axes of the H, and the axis of rotation is taken to be par-
allel to r2. Thus, the gray plane swept by r1 is left invariant by the
rotation. Note, then, that the epipolar direction is that of r1 in R

and that of Mr1 in R0, and its perpendicular within each image is
the direction of the rotation axis.

A geometric proof of Theorem 1 is included in Appendix A.
Within the same geometrical framework, in Appendix B, this result
is generalized to the affine camera model giving Theorem 4. Let us
sketch the main ideas of this generalized result; the reader is
referred to Appendix B for the details of the proof. The main advan-
tage of this generalization is that, within the affine camera model,
the projected target does not need to be centered in the image
(assuming that the image center is a good approximation to the
principal point). This enables us to handle a broader range of situ-
ations where the condition of small field of view is satisfied but the
condition of being centered is relaxed, as, for instance, those aris-
ing in the experiments performed in Section 4.3.3. The affine cam-
era model, which encloses the weak-perspective one, projects a
Mr1

Mr2R’

S

r1

r2
R

Fig. 2. Graphic illustration of Theorem 1. See text for details.
scene point first under a fixed direction (which corresponds to a
point O lying on the plane at infinity P1) onto the average depth
plane RC (the plane parallel to the image plane R containing the
centroid C of the scene object), and then perspectively from this
fronto-parallel plane RC onto the image R (Fig. 1). When O equals
the direction O orthogonal to the image plane, the affine camera
becomes a weak-perspective camera. By this projection procedure
it is inferred that the affine camera, as well as the weak-perspec-
tive camera, preserves parallelism.

While in the weak-perspective camera model the improper
optical center O is determined by the orientation of the image
plane (i.e., O is the pole with respect to the absolute conic X of
the improper line r of R), in the affine camera model the improper
optical center O may be any point in P1. In fact, the direction of
parallel projection, i.e., the improper optical center, depends on
the position of the projected target within the image plane. This
implies, on the one hand, that the same (pinhole) camera under af-
fine viewing conditions can take two affine views with different
improper optical centers (but keeping the same image plane). On
the other hand, this also implies that, while the orientation of
the image plane (and hence the improper optical center in case
of a weak-perspective camera) is determined by the displacement
performed by the camera, the improper optical center is not deter-
mined by the camera motion in the more general case of an affine
camera. This is one of the reasons that makes the affine camera
model more difficult to handle than the weak-perspective one.
Since the improper optical centers lie at infinity, the epipoles (of
the first and second affine cameras) are also located at infinity in
the image planes, i.e., the epipolar lines in both views are parallel.
But, while in the weak-perspective cameras the epipoles coincide
with the orthogonal direction (in the image plane) of the axis of
rotation, in the general affine cameras the epipoles are no more re-
lated to this distinguished direction and, thus, a priori, they do not
provide information about the rigid motion between the two affine
cameras. This explains why most of the literature about the general
affine model switches to the weak-perspective camera model
when the question of inferring camera motion is addressed. By this
same reason, our generalization to the affine camera is valid only
when the viewing directions of the pair of the affine cameras span
a plane perpendicular to the axis of rotation. Let us state the an-
nounced result:

Theorem 2 (see Theorem 4 in Appendix B). Assume that the rigid
motion between two affine cameras is free of cyclorotation and that
the target projections are shifted (from the center of the image) along
the direction orthogonal to the axis of rotation. Then the epipolar
direction can be recovered as one of the two eigenvectors of the
vectorial part M of the affinity that relates the two affine views of a
planar scene.
2.3. Computing the epipolar direction from the affinity parameters

Fix any coordinate frame in the image (for instance pixel coor-
dinates, since orthonormality is not required) and assume that the
affinity that relates the two views has the expression

x0 ¼Mxþ t ¼
M1;1 M1;2

M2;1 M2;2

� �
x

y

� �
þ

tx

ty

� �
: ð9Þ

By virtue of Theorem 1, the epipolar direction is one of the eigen-
vectors of M. An eigenvector [1,w]> of M satisfies the equation

M1;2w2 þ ðM1;1 �M2;2Þw�M2;1 ¼ 0: ð10Þ

If the motion is under the hypothesis of Theorem 1, then (10) must
have two real solutions w1, w2, and the epipolar direction is
e = [1,wi]>, for some i 2 {1,2} (or [1]>, in case M1,2 = 0).



Fig. 3. Affine deformations in the image plane induced by 3D camera motion.
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3. Extracting the affinity parameters in our implementation

The affinity that relates two affine views is usually computed
from a set of point matches. However, point matching is still one
of the key bottlenecks in computer vision. In this work, matching
is avoided by fitting a B-spline [14] to a planar target contour,
which is tracked between views using a Kalman filter. The affinity
is then computed from the difference in control points between the
two views [15].

Let Qx and Qy be column vectors of the x and y components of
the control points. Then,

Q ¼ Q x

Q y

" #
ð11Þ

represents the control points in one view, and analogously Q0 those
in the other view.

Applying Eq. (3) to the pairings of control points in the two
images, it is easy to verify that the difference in control points
Q0 � Q may be written as a linear combination of six vectors. Using
matrix notation,

Q 0 � Q ¼WS; ð12Þ

where

W ¼
1
0

� �
;

0
1

� �
;

Q x

0

" #
;

0
Q y

� �
;

0
Q x

� �
;

Q y

0

" # !
; ð13Þ

and S is a vector with the six parameters of the linear combination,
the shape vector

S ¼ ½tx; ty;M1;1 � 1;M2;2 � 1;M2;1;M1;2�>; ð14Þ

which encodes the relation between the two affine views of the pla-
nar contour.

Fig. 3 (reproduced from [16]) shows the graphical effect of each
parameter: two translations and four scalings. Observe that the
dimension of the shape vector can be reduced if robot motion is
constrained, for instance to lie on a plane [17,18].

In previous works [19,20], the shape vector updated along an
image stream was used to estimate robot egomotion in practice,
provided data from other sensors (such as an inclinometer) or
scene information (such as depth) were supplied. Here we focus
on the extraction of epipolar direction from the shape vectors of
just two views, and the analysis of the attainable accuracy in the
different possible working conditions.

When projective effects are present in the image, the affine
model is no longer valid. For this case, Drummond and Cipolla
[21] proposed a projective compensation mechanism which intro-
duces two additional terms in the shape matrix. However, they
advice that using these terms permanently, especially when pro-
jective effects are small, is disadvantageous since measurement er-
rors become larger. Because image motions they induce are
comparatively small, and measurements are not consistent as the
amount of projective deformation changes more rapidly than affine
deformation, principally in depth changes.

4. Experimentation

Two sets of experiments were performed to evaluate the accu-
racy of the proposed method. The first set uses synthetic image
sequences generated by simulating camera motion and computing
projections under a full perspective camera model. Using this set,
the sensitivity of the proposed technique is assessed: first, with
respect to the characteristics of the contour shape; second, by
relaxing the different weak-perspective conditions one at a time;
third, when the motion has some amount of cyclorotation; and
fourth, by adding variable amounts of pixel noise. Note that this
would be hard to do using real images.

The affine epipolar geometry is usually estimated using the gold
standard algorithm [22]. This technique requires image correspon-
dences of at least four non-coplanar points. Using also our syn-
thetic experimental testbed, we show the effects of approaching
coplanarity for this configuration, and compare the results with
those of our method, which computes the affine epipolar direction
only from planar contour matches.

The second set of experiments uses real images taken by a robot
arm moving along a calibrated path, showing the performance of
the approach under realistic imaging conditions. Finally, when
using a frontoparallel centered target, the matrix M in (9) becomes
symmetric. We also show the consequences of exploiting this fact
to reduce the dimension of the shape vector (14) from 6 to 5 when
parameterizing contour deformations.

4.1. Preliminary considerations

4.1.1. Contour representation
As mentioned in Section 3, the contour is represented by means

of B-splines. Briefly, the sequence of control points, together with
the multiplicity of the knots joining the different polynomial curve
segments, are used to represent the contour [15]. The knot multi-
plicity determines the smoothness of the curve at that point. In our
representation with quadratic B-splines, double multiplicity is
used to encode corners. As can be seen in Fig. 4a and b, by just dou-
bling the multiplicity of one knot, the modelled contour changes,
even if the sequence of control points remains the same. Thus, both
the set of control points and the knot multiplicities should be used
to obtain the shape vector S from Eq. (12).



Fig. 4. Representing contours using B-splines: (a) and (b) show that different contours can be modelled with the same control polygon but different knot multiplicities, while
(c) displays the modelling of the H-shaped contour used in the experiments. (a) 7 Control points (b) 7 control points and 1 double knot (c) 18 control points and 8 double
knots.
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This is how it is done when we use the tracker in the exper-
iments using real images. However, in the experiments using
synthetic images, we compute the pseudoinverse of the shape
matrix with only the control points, disregarding knot multiplic-
ity. This simplification is valid because the H-shaped contour
used in the experiments (Fig. 4c contains many double knots
and, thus, its control polygon fits well the actual contour. The
same is true for the square shape also used in the synthetic
experiments.

4.1.2. Camera model used to generate synthetic images
When synthetic images are generated using an affine camera

model (i.e., assuming perfect weak-perspective conditions), the
epipolar direction is exactly recovered with the proposed method.
However, we would like to assess the validity of the method under
more general conditions. To this end, we generate the test set of
synthetic images using a full perspective camera model (refer to
Fig. 1). Then, of course, perspectivity effects affect the recovery of
the epipolar direction in the ways that will be analysed in the fol-
lowing sections.

An illustration of the differences in projected contour control
polygons for both camera models can be seen in Fig. 5 for two dif-
ferent targets: a simple square (Fig. 5a) and an ‘‘H” form (Fig. 5b).
In the plot, (1) represents the original template, (2) corresponds to
the weak-perspective projection and (3) indicates the full perspec-
tive projection. These plots were obtained after a camera rotation
of 40� about an axis centered on the target centroid and having
an inclination of 45�, as drawn in the figure. The target is located
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Fig. 5. Difference in the projection of two control polygons for the two camera models dis
the target center. (1) Original contour, (2) weak-perspective projection, and (3) full-per
at a distance of 500 mm from the camera plane, and the camera
is simulated with a focal distance value of 5 mm. Note how this
configuration has purposely been chosen away from weak-per-
spective assumptions, in order to observe perspective effect differ-
ences in the projection of the two models.

4.1.3. Theoretical analysis of the error
Following our aim of assessing the validity of the method under

more general conditions than the weak-perspective ones, this sec-
tion derives the approximation error when assuming an affine
camera model under not exactly weak-perspective conditions.
The derivation is based on the discussion of the approximation er-
ror proposed by Shapiro [23] for weak-perspective cameras. Start-
ing with the full perspective projection equation

xpersp ¼
x

y

� �
¼ f

Z
X

Y

� �
; ð15Þ

with depth Z = Zave + DZ, it can be expanded about Zave using Taylor
series

x

y

� �
¼ f

Zave þ DZ
X

Y

� �
¼ f

Zave
1� DZ
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. . .

 !
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Y
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: ð16Þ

When jDZj � Zave, (16) can be approximated by

x

y

� �
� f

Zave
1� DZ
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� �
X

Y

� �
: ð17Þ

Finally, for a small fields of view, that is, for:
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cussed, after rotating the camera 40� about a 45� axis on the target, passing through
spective projection. (a) Square shape (b) ‘‘H” shape.
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jX � Xavej � Zave ð18Þ
jY � Yavej � Zave ð19Þ

where (Xave,Yave) are the (X,Y) average coordinates of the target,
then (17) can be approximated by

x

y

� �
� f

Zave

X

Y

� �
� f

Zave

DZ
Zave

Xave

Yave

� �
¼ f

Zave

X

Y

� �
� f

Zave
DZ

tan ax

tan ay

� �
ð20Þ

where ax,ay describe the projection direction and assess how cen-
tered is the target in the image.

Small angles indicate centered or nearly centered targets.
Hence, the absolute error in image point position is

xerr ¼ xpersp � xweak ¼ �
DZ
Zave

f
tan ax

tan ay

� �
ð21Þ

It is interesting to observe that the error has a crossed relation with
the field of view, since this error term is deduced assuming a small
field of view. This explains some of the effects observed during
experimentation. If the experimental setting forces changes in the
field of view, the observed errors should be interpreted taking into
account that an increase (or decrease) of the field of view can com-
pensate a decrease (or increase) in the error due to changes in the
target relief (DZ), depth (Zave) or position in the image plane (ax,ay).

4.2. Effects of the contour shape

To determine the influence of the contour shape on the recov-
ery of the epipolar direction, we use the square and H-shaped
contours in Fig. 5. Synthetic images of the two contours are gen-
erated for any positioning of the camera on the surface of a
sphere centered on the target centroid and of radius Zave. This
is equivalent to a pure rotation of the camera about an axis on
the target, passing through the target centroid. As mentioned in
the preceding section, projections are performed under a full-per-
spective camera model.

Fig. 6b shows the evolution of the recovery error for a rotation
of 40� about an axis whose orientation varies from 0� to 360�. Zave

is fixed to 1500 mm. Observe that the error remains very low
throughout: less than 0.1�. For the square shape, the error shows
a periodicity of 90�, and it is zero for the specific rotations at 0�,
45�, . . ., 360�. In upcoming sections we will see that this effect is
preserved even after weak-perspective imaging assumptions are
relaxed. However, for the more complex H shape, the epipolar
recovery error is not equally distributed in the four quadrants,
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Fig. 6. Error in the recovery after a camera rotation of 40� about an axis passing through t
shows the error in the recovery of the epipolar direction, while the dotted one indicates
‘‘H” shape.
and the rotations for which the error is zero do not have the same
periodicity as for the simple square model.

From this and similar experiments, we conclude that the shape
of the contour being tracked has an influence on the distribution of
the error for different camera motions, but not much on the aver-
age recovery error. This is presumably due to differences in shape
symmetries and in the number of points conforming the control
polygon.

4.3. Relaxation of weak-perspective conditions

4.3.1. Camera translation along the optical center: distance to target
We analyse how a decrement of the distance from the camera to

the target Zave affects the computation of the epipolar direction.
Decreasing the distance enlarges perspective effects, and conse-
quently, should increase the error in epipolar direction recovery,
as reflected in Eq. (21).

For this experiment we consider distances of 500, 750, 1000,
1250, 1500, 1750 and 2000 mm. The smallest of these, 500 mm,
corresponds to an extreme situation for the weak-perspective
model, in which important unmodelled distortions in the projected
control polygon are present (refer to Fig. 5b). For larger depth val-
ues, the affine conditions are better satisfied, thus reducing the er-
ror, as shown in Fig. 7. It is worth noting that even under these
unfavourable conditions the recovery error stays below 0.6�.

4.3.2. Depth relief of the target
The weak-perspective model assumes that the depth relief of

the target is very small compared to the distance Zave from the
camera to the target centroid. In our case in which the target is a
planar contour, this means that the distance from the contour in
3D to its projection onto a plane centered on the target and parallel
to the image plane is very small compared to Zave.

Starting from a fronto-parallel view of the contour, the amount
of depth relief is directly related to the amount of camera rotation
about an axis placed on the contour. Depth relief appears as the
contour is not fronto-parallel anymore (see Fig. 8) and object
points are far from the mean depth plane at Zave. At the same time,
the size of the object projection decreases reducing the effective
field of view. As mentioned in Section 4.1.3, these two effects tend
to compensate one another.

Fig. 9 shows the results of a series of experiments performed by
turning the camera from 10� to 50� around an axis at 45� placed on
the object. At the same time, Gaussian noise with standard devia-
tion equal to 0.25, 0.5, 0.75 and 1 is added to the Z component of all
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Fig. 8. Starting with a frontoparallel target T, a first view R0 is taken and then two
other views R1 and R2 are taken; R2 after a larger amount of rotation than R1. The
maximum angle ai between the rays of the target projection decreases (and, thus,
the projection becomes closer to a parallel projection) as the amount of rotation
increases.
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the points, and then they are projected onto the image plane. This
is to simulate depth relief changes.

On the one hand, as can be seen for each one of the different
inclinations, when the depth relief increases the error in the esti-
mation of the epipolar direction also increases. This is congruent
with the theoretical analysis of the error. It is straightforward to
assess from Eq. (21) that the effect of increasing DZ is an increment
in the error xerr.

On the other hand, when the amount of rotation increases, the
overall epipolar direction estimation error decreases. This is a con-
sequence of the reduction in the effective field of view.

4.3.3. Lateral camera translation: uncentered contour
The weak-perspective camera model assumes that the distance

of the contour control points to the principal ray are small, again in
relation to the distance Zave from the camera to the target. This
condition can be satisfied with a small field of view, and keeping
the projected target centered in the image (supposing that the im-
age center is very close to the principal point). In order to evaluate
the effects of relaxing the condition that the target is centered, we
simulate a series of camera translations parallel to the target plane.
We show results for a series of translations at orientations 0�, 30�,
. . ., 150� on the image plane, and the special cases at 45� and 135�.
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These translations range from �175 to 175 mm, spanning the en-
tire simulated image area.

Compared to the previously evaluated conditions, camera trans-
lations that result in target shifts in the image lead to the largest
errors in the computation of the epipolar direction. As can be seen
in Fig. 10, contour shape effects are negligible compared to the er-
ror induced by lateral camera translation. Note that this is concor-
dant with the theoretical analysis in Section 4.1.3, since contour
displacement from the optic axis is related to the error through a
tan function.

Moreover, epipolar recovery errors are more significant for
translations along directions orthogonal to the epipolar direction
(135�), and negligible along the epipolar direction. See Appendix
B for a geometrical explanation of this effect, which corresponds
to a particular case of Theorem 4 proved therein.

4.4. Effects of cyclorotation

Our algorithm assumes that there is no cyclorotation in the
camera motion. As can be easily seen in Fig. 2, performing a camera
motion that contains cyclorotation would not preserve any image
direction. We like to quantify the error in the recovery of the epi-
polar direction as the amount of cyclorotation increases.

Fig. 11 shows the large errors resulting from the same experi-
ment of Section 4.2 but introducing different degrees of cyclorota-
tion. For each experiment, the rotation is 40� about an axis passing
through the target center whose orientation varies from 0� to 360�,
and whose cyclorotation component ranges from 0.5� to 5�. As
expected, the error in the recovered epipolar direction severely
increases with respect to the amount of cyclorotation.

4.5. Sensitivity to pixel noise

The affinity M relating two views nears the identity for small
motions, and thus the computation of the epipolar direction based
on M is very sensitive to perturbations in the projection of the con-
trol points. To evaluate this sensitivity, we consider rotations rang-
ing from 5� to 50� about an axis oriented at �45� on the target
plane, for which the recovery error neared zero under noise-free
conditions (Fig. 9). Gaussian noise with standard deviations equal
to multiples of 0.25 pixels are added to both the x and y compo-
nents of the image projections of the control points. A Monte Carlo
simulation is performed for 10,000 samples, and the results are
plotted in Fig. 12. For each shape, there are 10 plots corresponding
to the rotation angles from 5� to 50� and, within each plot, the
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Fig. 10. Error in the recovery of the epipolar direction for a fixed rotation of 40� about
translations of the camera along the several directions listed in the insert are performed
mean epipolar direction and its standard deviation are represented
as a vertical segment for each noise level from 0.25 to 1.00 pixels.

Note that, in accordance with the effect illustrated in Fig. 8, lar-
ger rotations lead to smaller recovery errors. Moreover, as could be
expected, higher amounts of noise yield a poorer recovery,
although it is worth mentioning that for rotations larger than say
20� the recovery is quite good even in the presence of considerable
noise. Conversely, for rotations smaller than 10�, our technique
shows not to be reliable under noisy conditions. Observe that the
results for the ‘‘H” shape are much better, especially for small rota-
tion angles, than those for the square, due to the fact that a larger
number of control points results in a better estimation of the
affinity.

4.6. Comparison with the gold standard algorithm

To this point, we have analysed the effects of several factors on
the accuracy of our proposed procedure. Now, and still in a simu-
lated setting, we would like to carry out a comparison with another
technique for computing the affine epipolar geometry, namely the
gold standard (GS) algorithm [22]. This algorithm, contrary to our
procedure, needs non-coplanar point correspondences in order to
compute the maximum likelihood estimate of the affine funda-
mental matrix. While in theory, only four non-coplanar points
would suffice for computing the affine epipolar geometry using
the GS algorithm; its performance is affected by the amount of
non-coplanar information provided, both in terms of depth range
and in the number of points used. The idea is to establish experi-
mentally the amount of depth information required by the GS for
this algorithm and our procedure to provide equivalent epipolar
direction recovery results.

To this end, we set first an experiment in which we add a range
from two to twelve extra points to the H-shaped contour, varying
their distance with respect to the contour plane. Camera parame-
ters are fixed at: 500 mm distance to target and a focal distance
of 767 pixels. As before, camera motion is achieved via a rotation
of 40� about an axis placed at an orientation of 45� on the target
plane. The results are shown in Fig. 13. It can be seen how as the
depth of these points is increased, the error in the computation
of the epipolar direction decreases. Furthermore, it turns out that
the number and xy location of these points have little effect in
the computation of the epipolar direction. The figure contains plots
of the resulting errors in the computation of the affine epipolar
direction with the GS algorithm for different numbers of out-of-
plane points, and a cut threshold indicating the error in the recov-
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ery of the epipolar direction using our proposed technique under
the same experimental conditions (the additional points out of
the contour plane are evidently not used in this case). As shown
in the figure, for the given experimental conditions, the results of
our technique are comparable to the results of the gold standard
algorithm when the extra points are placed roughly at a distance
equal to the target size (120 mm in our case).

Note the importance of parallax in the computation of the affine
fundamental matrix in the gold standard algorithm. As the target
points approach coplanarity, the parallax vector, which determines
the epipolar direction, is monotonically reduced in length. Conse-
quently, the accuracy of the line direction is correspondingly
reduced, and the covariance of an estimated affine fundamental
matrix increases. This situation does not occur in our procedure,
as it has been devised precisely to compute the affine epipolar
direction from two views of a plane.

Our second experiment evaluates the noise sensitivity of both
techniques for computing the affine epipolar direction, and con-
sists in repeating the same experiment multiple times adding
Gaussian noise to the control polygon projections. The experiment
is performed for our approach using the planar ‘‘H” shape, and for
the GS algorithm using: (a) the planar ‘‘H” contour and two off-the-
plane control points at a distance of 120 mm, (b) 24 control points
divided in two layers resembling two ‘‘H” shapes at different dis-
tances, and (c) a randomized depth assortment of the 12 ‘‘H” con-
trol points. Table 1 shows a comparison of the results obtained for
an increasing standard deviation of 0–1 pixels in image noise.

Observe that our procedure and GS using two layers of control
points provide the most consistent results, while GS with only two



Table 1
Epipolar direction recovery using our procedure and the Gold Standard algorithm, for increasing levels of Gaussian pixel noise

Case Noise (pixels)

0.00 0.25 0.50 0.75 1.00

Planar contour ‘‘H” l �44.97 �44.95 �44.96 �45.04 �45.07
With our technique r 0 0.193 0.492 0.552 0.876
Planar contour ‘‘H” and 2 l �43.76 �43.77 �43.78 �43.74 �43.85
Points 120 mm off the plane (GS) r 0 0.143 0.245 0.436 0.486
2 Layers of the contour l �44.91 �44.91 �44.89 �44.92 �44.91
‘‘H” at 0 mm and 120 mm (GS) r 0 0.068 0.140 0.210 0.324
Randomized depth values l �44.81 �45.75 �45.03 �44.51 �44.84
For the control polygon points (GS) r 0 0.294 0.486 0.712 0.625

Ground truth is a camera rotation of 40� about an axis at 45� on the target.
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out-of-plane points yields a somewhat downward-biased estima-
tion. Overall, though, no big differences in accuracy are observed.

4.7. Experiments using real images

We present now results on image sequences in a controlled set-
ting of our technique for computing the affine epipolar direction
from pairs of views of a plane only. The goal of this work is not
tracking, but computing the affinity and using it to estimate the
epipolar direction induced by the two views. To this end, we facil-
itate the tracking phase by moving a simple target placed on a
manipulator end-effector, and focus on evaluating the accuracy
of the direction recovered in different situations, compared to ro-
bot motion ground truth.
Fig. 14. The first experiment with real images entails pairs of views consisting of the init
axis on the target with inclinations sampled at intervals of 15�. The computed epipolar d
30� (d) 45� (e) 60� (f) 75�.
The experimentation setup consists of a Stäubli RX60 manipula-
tor holding the target pattern on its end-effector. This target is a
planar artificial H-shaped figure with corners and curved edges,
which can be easily tracked with our active contour tracker. Images
are acquired using a Sony DWL500 firewire camera with a cali-
brated focal length of 767 pixels. The working zone of the robot
arm is highly limited, and this restricts the repertoire of experi-
ments that we can perform with it. So the initial distance from
camera to target has had to be set to 500 mm. This corresponds
to the extreme case discussed in Section 4.3.1, Fig. 7, and, therefore,
we are testing the proposed approach under relaxed weak-per-
spective conditions, as studied in simulation in Section 4.3. The ac-
quired images have evident perspective effects, as shown in Figs.
14 and 15.
ial one plus each of the other five, corresponding to camera rotations of 40� about an
irection is displayed as a line passing through the target center. (a) Initial (b) 15� (c)



Fig. 15. Experiments with real images further relaxing weak-perspective condi-
tions. The first sequence, entailing an uncentered target, starts at (a) and ends at (b).
The next sequence departing from a non-frontoparallel target position starts at (c)
and ends at (d). The last sequence, testing also non-frontoparallel initialization,
starts at (d) and ends at (a). (a) Initial, (b) lateral translation and 40� (c) 20� (d) 40�.

Table 3
Mean and standard deviation of the epipolar direction computed over real images
when weak-perspective conditions are further relaxed

Frames h r

Not centered �34.65 0.13
Not frontoparallel A �43.89 0.09
Not frontoparallel B 43.96 0.10
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The first experiment entails camera motion induced by a rota-
tion of 40� about an axis on the target at various inclination angles
sampled at intervals of 15�. This, thus, relates to Fig. 7b with dis-
tance equal to 500 mm. Starting from the fronto-parallel position
shown in Fig. 14a, the contour is tracked to each of the final views
shown in the remaining frames of the figure. The epipolar direction
computed by the proposed algorithm in each case is displayed as a
line passing through the target center.

Table 2 presents the numerical values obtained in the computa-
tion of the epipolar direction. Standard deviation is computed by
acquiring 300 images in the final position, estimating the shape
vectors and then computing the corresponding epipolar directions.
Note that the standard deviations are all very similar, and the mean
values deviate more from the ground truth as the angle departs
from the 45� inclination. This should be interpreted in the light
of Fig. 7 as meaning that the tracker amplifies the recovery error
due to perspectivity effects unmodelled by the weak-perspective
camera. Consequently, under true weak-perspective conditions,
the errors should be much lower as indicated by the shrinking of
Table 2
Mean and standard deviation in degrees of the epipolar direction computed by the
proposed technique from real images

Epipolar direction �15 �30 �45 �60 �75

�h �16.63 �31.01 �45.00 �57.63 �72.04
r 0.14 0.09 0.14 0.19 0.13
the error curves in Fig. 7 when the distance Zave from the camera
to the target increases.

Three additional sequences were analyzed after further relaxing
weak-perspective conditions, in the same way as in the synthetic
case. The first such sequence, labelled ‘‘Not centered”, starts at
the fronto-parallel initial position (Fig. 15a) and finishes at an unc-
entered position, after a translation of 100 mm along the x axis of
the robot coordinate frame and a rotation of 40� about an axis at
45� inclination (Fig. 15b). Consistent with our simulated results
(refer to Section 4.3.3), this lateral camera translation is by far
the violation of weak-perspective conditions that has the most per-
vasive effect on the computation of the epipolar direction. See the
numbers in Table 3, first row.

The second experiment, labelled ‘‘Not Frontoparallel A”, corre-
sponds to the same rotation described above, but the initial frame
is not frontoparallel. The sequence starts with the target already
rotated 20� as shown in Fig. 15c and, after a further rotation of
20�, finishes at 40� (Fig. 15d), all rotations about an axis at 45�
inclination as before. Observe that the result is a bit worse than
that of the initial experiment, but with a similar standard
deviation.

Finally, the last experiment, labelled ‘‘Not Frontoparallel B”, cor-
responds to a sequence from a non-frontoparallel initialization of
the contour at 40� of rotation (Fig. 15d) going back to a frontopar-
allel target position (Fig. 15a). The result is very similar to that of
the preceding experiment.

4.8. A remark: interest of reducing shape space

Using a frontoparallel centered target, the matrix M in (9) turns
out to be symmetrical. We can exploit this fact to reduce from 6 to
5 the dimension of the shape vector (14) used to parameterize con-
tour deformations to
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Reproducing the experiments of Section 4.2 with this reduced
shape matrix results in exactly perpendicular solutions for the
epipolar direction and the rotation axis. This is because the vec-
torial part of the weak-perspective deformation is forced to be
symmetric even with the perspective effects present. As a result,
the computed errors are the same for both. Fig. 16a and b shows
the values for both the epipolar direction and the rotation axis
superimposed one on top of the other. Note that the angles at
which the error becomes 0� are preserved, as the symmetry axes
in the contour have not changed. This may not be of great benefit
when weak-perspective image conditions are satisfied, but when
perspective effects are strong, reducing the shape space greatly
diminishes the distorsions that these effects cause in the recovery
of the epipolar direction.

As mentioned before, we have exploited this advantage for
improving egomotion recovery in some practical settings [17,18].

4.9. Applicability considerations

Throughout this experimental section we have made an effort
to gradually relax the imaging conditions away from the weak-per-
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Fig. 16. The same plots as in Fig. 6 but using a 5D shape vector instead of a 6D one.
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spective model, in order to assess the validity of the proposed
method even under unfavourable conditions. We have seen in Sec-
tion 4.3.1 that the error introduced by small translations along the
optical axis is negligible, and in Section 4.3.2 that the depth relief
assumption is not really required in normal conditions. Contrarily,
in Section 4.3.3 we have shown that lateral camera translations
that shift the contour away from the center of the image introduce
critical errors. In a realistic application one needs to ensure that the
target projects always to the center of the image. To do so, an ac-
tive vision system that keeps the tracked contour always centered
in the image, regardless of camera motion, should be used.

Moreover, we have seen in Section 4.5 that the epipolar direc-
tion cannot be accurately computed for small rotation values in
the presence of pixel noise. In the implementation with our robotic
arm and real image sequences, accurate estimation of the epipolar
direction could be obtained once a rotation of 15� was exerted, or,
equivalently, once the camera was translated laterally roughly one
fifth of its distance to the target whilst keeping the target centered.

Finally, if we can assume that the target is frontoparallel in
some frame of the motion sequence, one should consider the use
of the reduced shape space equations defined in Section 4.8.

5. Conclusions

The recovery of camera motion and scene structure from uncal-
ibrated image sequences has received a lot of attention lately due
to its numerous applications, which range from robot localization
and navigation, to virtual reality and archeology, to name just a
few. Most works rely on detecting a set of non-coplanar points in
the scene and matching their projections on the different views.
Good results are achieved only when scenes are textured enough
to allow visual motion estimation from point correspondences. In
this paper we have departed from this main stream, by dealing
with a less informative situation, namely features lying on a plane,
and recurring to contour tracking instead of point matching.

Our main result is that, under weak-perspective conditions and
assuming a camera motion free of cyclorotation, the epipolar direc-
tion can be recovered from the affinity relating two views of a pla-
nar scene. Two proofs of this result are provided, one within the
framework of projective geometry, and the other through an ana-
lytic development.

Two sets of experiments have been undertaken to study the
performance of the proposed method. In both, the affinity relating
two views is derived by tracking a planar contour from one view to
the other, and then extracting the affinity parameters from the ob-
served contour deformation, coded as a 6D (or 5D) shape vector.
First, synthetic images were used to evaluate the results in a
noise-controlled environment by relaxing one by one the condi-
tions of the imaging model, and then to compare the accuracy of
our method with that of the Gold Standard algorithm, which rely-
ing on matches of non-coplanar points falls in the main stream
mentioned above.

The outcome of the comparison has been very encouraging,
since with less scene information (only from a plane) and with a
much simpler processing (solving a single second-order equation),
we are able to obtain the epipolar direction with similar accuracy.
It is worth reminding, however, that our method is less general in
that it requires a camera motion free of cyclorotation.

The second experimental set consisted of image sequences that
were used to validate the proposed approach under real imaging
conditions. Note that the objective of the paper is to show what
can be obtained from the affine deformation of two views of a con-
tour, and not to validate the robustness of the contour tracker used.
For this reason, simple and well-calibrated image sequences were
used in order to have a good basis for ground truth comparison.

Future work will try to unravel under what circumstances
additional information on camera motion and scene structure
can be recovered. The problem of motion recovery from three
or more images will be addressed within the general geometric
framework described in [24]. Along the same line, we will tackle
the recovery of the orientation of the scene plane, as well as what
occurs in degenerate situations in which such orientation is the
same as that of the image plane, or when both planes have a
common direction.

Appendix A. Geometric study of two weak-perspective views

A.1. The camera model

Consider a weak perspective (or scaled orthographic) camera w,
which projects a scene point first orthographically onto the aver-
age depth plane RC (the plane parallel to the image plane R con-
taining the centroid C of the scene object) and then perspectively
from this fronto-parallel plane RC onto the image R. Let P be the
proper optical center of the second perspective projection, which
simply introduces a scale factor. Modulo this scale factor, the
weak-perspective camera is an orthographic camera: all the pro-
jection rays are parallel with direction orthogonal to the image
plane R; consequently, if O is the improper optical center (lying
on the plane at infinity P1), then the improper line r of R or RC ,
that is, r ¼ R \P1 ¼ RC \P1, is the polar of O with respect to
the absolute conic X, lying on P1.

Consider a world point X projected by the weak-perspective
camera w to the image point x = w(X), namely
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w : P3 �!_O O� �!\RC

RC �!_P P� �!\R R; ðA:1Þ

and x ¼ ðððX _ OÞ \RCÞ _ PÞ \R, where O* denotes the rays through
O, _O denotes the projection with center O, and \R denotes the sec-
tion with the plane R. From (A.1) it is inferred that the weak-per-
spective camera w (as well as the affine camera) has the property
of mapping world directions to image directions: an improper
world point X 2P1 is projected to an improper image point
x = w(X) 2 P1 given by x = (X _ O) \ r. Thus, a world plane S is
mapped by the affinity wjS to the image plane, i.e. the camera pre-
serves parallelism.

Consider a second weak-perspective camera w0, whose image
plane, improper and proper optical centers are R0, O0 and P0, respec-
tively. Let S be a world plane of improper line s ¼ S \P1. The
restriction to a coplanar scene induces a projectivity w0jS � ðwjSÞ

�1

between the two weak-perspective images. Furthermore, it is an
affinity, since image directions are mapped to image directions:
w0jS � ðwjSÞ

�1ðrÞ ¼ r0, where r0 ¼ R0 \P1. Thus, we can consider the
induced projectivity W ¼ ðw0jS � ðwjSÞ

�1Þjr between the improper im-
age lines (see Fig. A.1), which is given by

W : r �!_O O� �!\s s �!_O0 O0� �!\r0 r0: ðA:2Þ

Once a reference world point X0 2 S and its respective images
x0 2 R and x00 2 R0 are chosen, the affinity w0jS � ðwjSÞ

�1 is determined
by fx0; x00;Wg, modulo a scale factor. In our application, the centroid
of a world planar contour will be taken as the reference point, i.e.,
X0 = C, and its projections x0 and x00 will be easily recognized in
the image planes as the centroids of the respective target contours,
since the images are related to the scene plane by an affinity. Ob-
serve that, after the analysis of the camera model carried out, most
of the relevant information of the affinity relating two weak-per-
spective views is enclosed by the projectivity W at infinity.

A.2. The geometry at infinity

Let us analyze the situation in the plane at infinity. Since the
optical centers of the two weak-perspective cameras lie at infinity,
the epipoles E = (O _ O0) \ r and E0 = (O _ O0) \ r0 (of the first and
second cameras, respectively) are also located at infinity in the im-
age planes, i.e., the epipolar lines are parallel.

The rigid motion between the two cameras is decomposed into
a rotation and a translation. The translation restricted to the plane
at infinity is the identity. Hence only the change of pose modifies
the location at infinity.

The rotation, say /, sends r0 to r and it is decomposed into
two parts (cf. Koenderink and van Doorn rotation representation
[4]): a rotation about an axis of direction A = r \ r0 and angle q,
Fig. A.1. Geometry on the plane at infinity of two weak-perspective cameras. The
notations are explained in the text.
and a rotation about an axis of direction O and angle h. The first
rotation is a pure rotation out of the image plane, and the second
is a rotation inside the image plane (also called cyclorotation). Let
U: r0 ? r be the restriction of the rotation to the improper line of
the second image. The decomposition of the rotation restricted
to r0 gives

U : r0 �!UA
q

r �!UO
h r; ðA:3Þ

Observe that the polar of A with respect to the absolute conic X is
the line E _ E0 = O _ O0. Hence E _ E0 is the direction of the planes
orthogonal to the axis of the first rotation, and then UA

qðE
0Þ ¼ E

(see Fig. A.1). On the other hand, by (A.2) we obtain that W(E) = E0.
This gives a geometric proof of

Theorem 3 (Geometric version of 1). If the rigid motion between
two weak-perspective cameras is assumed to be free of cyclorotation,
then the epipolar direction E can be recovered as one of the two fixed
points of the improper image line homography U �W, which is induced
by the affinity / � w0jS � ðwjSÞ

�1 that relates two views of a planar
scene.

As a consequence, if the aspect ratio and skew (i.e. the intrinsic
parameters determining the metric structure in the image) are
known, the direction A = Eperp of the axis of rotation can also be
recovered.

Notice that, in image coordinates, the affinity / � w0jS � ðwjSÞ
�1 is

given by Eq. (3) and that the line homography U �W is given by the
matrix M, appearing in the same Eq. (3).

Appendix B. Geometric study of two affine views

Keep the notations of Appendix A. The weak-perspective cam-
era model assume that the distance of the target points to the prin-
cipal ray are small. This can be achieved with a small field of view,
when the projected target is centered in the image (assuming that
the image center is a good approximation to the principal point). If
the condition of being centered is relaxed, we need the more gen-
eral affine camera model, which encloses the weak-perspective
one: an affine camera �w projects a scene point first under a fixed
direction O 2 P1 onto the average depth plane RC (the plane par-
allel to the image plane R containing the centroid C of the scene
object) and then perspectively from this fronto-parallel plane RC

onto the image R. When O equals the direction O orthogonal to
the image plane, the affine camera becomes a weak-perspective
camera. If P is the proper optical center of the second perspective
projection, which simply introduces a scale factor, then the affine
projection is

�w : P3 �!_O O� �!\RC

RC �!_P P� �!\R R; ðB:1Þ

that is, analogous to the weak-perspective projection but for the im-
proper optical center O. Notice that, modulo a scale factor, all the
projection rays of the affine camera are parallel with direction O;
and that, as well as the weak-perspective camera, a world plane S

is mapped by the affinity �wjS to the image plane, i.e. the camera pre-
serves parallelism. While in the weak-perspective camera model
the improper optical center O is determined by the orientation of
the image plane (i.e., O is the pole with respect to the absolute conic
X of the improper line r of R), in the affine camera model the impro-
per optical center O may be any point in P1. To see this, suppose
that you have a camera under affine viewing conditions, that is,
the target is seen under a small field of view. Then the direction
of parallel projection, i.e., the improper optical center, depends on
the position of the projected target within the image plane. Hence
the same camera (with the same image plane) can take two affine
views with different improper optical centers. This is one of the rea-
sons that makes the affine camera model more difficult to handle



Fig. B.1. Geometry on the plane at infinity of two general affine cameras. The no-
tations are explained in the text.

Fig. B.2. Geometry on the plane at infinity of two affine cameras under the hypo-
thesis of Theorem 4. The notations are clear from the text.
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than the weak-perspective one. Thus, we will speak of a view of im-
proper center O taken by an affine camera. If O ¼ O, we say that it is a
weak-perspective view.

Consider a second affine camera �w0, whose image plane, impro-
per and proper optical centers are R0, O0 and P0, respectively; let O0

be the pole with respect to the absolute conic X of the improper
line r0 of R0. Let S be a world plane of improper line s ¼ S \P1.
As in the case of two weak-perspective cameras, the projectivity
�w0jS � ð�wjSÞ

�1 between the two images, induced by the restriction
to a coplanar scene, is in fact an affinity, since image directions
are mapped to image directions: �w0jS � ð�wjSÞ

�1ðrÞ ¼ r0, where
r0 ¼ R0 \P1. We also consider the induced projectivity (see
Fig. B.1) W ¼ ð�w0jS � ð�wjSÞ

�1Þjr between the improper image lines,
which is given, in the general affine case, by

W : r �!_O
O� �!\s

s �!_O0
O0� �!\r0

r0: ðB:2Þ

Consider the Koenderink and van Doorn decomposition [4] of the
change of pose of the two affine cameras: a rotation about an axis
of direction A = r \ r0 and angle q, and a rotation about an axis of
direction O and angle h, and its restriction to the improper lines:

U : r0 �!UA
q

r �!UO
h r: ðB:3Þ

The polar of A with respect to the absolute conic X is the improper
line O _ O0, which will be called virtual epipolar line. The virtual epi-
polar line is the direction of the planes orthogonal to the axis of the
first rotation, and then UA
qðE

0Þ ¼ E, where E = (O _ O0) \ r and
E0 = (O _ O0) \ r0 are called virtual epipoles.

As in the case of two weak-perspective cameras, the epipoles
E ¼ ðO _ O0Þ \ r and E0 ¼ ðO _ O0Þ \ r0 (of the first and second affine
cameras, respectively) are also located at infinity in the image
planes, i.e., the epipolar lines in both views are parallel. But, while
in the weak-perspective cameras the epipoles coincide with the
virtual epipoles, in the general affine cameras the epipoles are no
more related with the virtual epipoles and, thus, a priori, they do
not provide information about the rigid motion between the two
affine cameras. This is one of the reasons why most of the literature
about the general affine camera model switches to the weak-per-
spective camera model when the question of inferring camera mo-
tion is tackled.

In the more general setting of affine cameras we obtain the fol-
lowing generalization of Theorem 1, owing to the fact that
WðEÞ ¼ E0 by (B.2):

Theorem 4. Assume that the rigid motion between two affine
cameras is free of cyclorotation and that their improper centers lie
on the virtual epipolar line. Then the epipolar direction E ¼ E can be
recovered as one of the two fixed points of the improper image line
homography U �W, which is induced by the affinity / � �w0jS � ð�wjSÞ

�1

that relates two views of a planar scene (see Fig. B.2).

As a consequence, in the situation where the affine camera
takes first a weak-perspective view, and then moves and takes an
affine view of improper center lying on the virtual epipolar line,
the epipolar direction E ¼ E can be recovered as one of the two
fixed points of the improper image line homography, as well. This
explains the results obtained in the experiments performed in Sec-
tion 4.3.3.
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