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Abstract

Most vision-based robot positioning techniques rely on analytical formulations of the relationship between the robot pose and the
projected image coordinates of several geometric features of the observed scene. This usually requires that several simple features such
as points, lines or circles be visible in the image, which must either be unoccluded in multiple views or else part of a 3D model. Feature-
matching algorithms, camera calibration, models of the camera geometry and object feature relationships are also necessary for pose
determination. These steps are often computationally intensive and error-prone, and the complexity of the resulting formulations
often limits the number of controllable degrees of freedom. We provide a comparative survey of existing visual robot positioning
methods, and present a new technique based on neural learning and global image descriptors which overcomes many of these
limitations. A feedforward neural network is used to learn the complex implicit relationship between the pose displacements of a
6-dof robot and the observed variations in global descriptors of the image, such as geometric moments and Fourier descriptors. The
trained network may then be used to move the robot from arbitrary initial positions to a desired pose with respect to the observed
scene. The method is shown to be capable of positioning an industrial robot with respect to a variety of complex objects with an
acceptable precision for an industrial inspection application, and could be useful in other real-world tasks such as grasping, assembly
and navigation.

Keywords: Visual servoing; Robot control; Neural networks; Image features

1. Introduction

A long-standing goal in the field of robotics has been
to endow robots with more sophisticated position con-
trol capabilities through the use of vision feedback. In
theory, a robot with vision would be able to approach,
track and grasp unknown objects in arbitrary locations,
assemble parts and avoid unexpected obstacles, even
despite deformations and miscalibrations in its mechan-
ical structure. The ideal system can be imagined as that
which allows manipulating arbitrary objects in real
environments, without having to model the object, the
environment or the camera, which needs no calibration,
and which can track moving objects in real time.

Present technology still seems far from achieving these
goals. Despite the growing volume of published works
describing visual control methods and systems, most of
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them have not evolved far beyond the ‘laboratory’ prob-
lem: for simplified, invariant objects and environments.
With the exception of several commercial bin-picking
systems, the few existing industrial systems are generally
aimed at repetitive tasks in simplified environments, such
as welding metal and applying silicone beads.

One of the main reasons for the limitations of many
visual control systems is the persistent use of very simple,
unrobust vision techniques. Typically, a few points, lines
or other geometric object characteristics are used as
image features, whose reliable extraction largely depends
on the shape of the object and its surroundings, and often
requires inserting specially designed visual cues into the
scene. Assuming such a set of local features may be
obtained, precise positioning can often be achieved.
Few geometrical assumptions may be made with regard
to arbitrary scenes in real environments, however, where
scenes are generally complex, difficult to model, and
partially occluded depending on the viewpoint.
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To translate geometric features into robot movements,
models of the object and the camera are usually required,
the camera must be calibrated, and the features in two or
more images must be matched in order to estimate the
relative coordinates of the robot and the object. These
tasks are often burdensome, computationally intensive
and prone to estimation errors.

In the present work, a visual positioning method is
proposed based on neural learning and global image
descriptors, with the aim of overcoming some of
these limitations and making an important advance-
ment towards the use of visual robot positioning in real
environments.

1.1. Vision-guided robots

The basic task of visual positicning is to control the
pose of a robot end-effector using information extracted
from images of the robot’s workspace. The robot pose is
a six-element vector representing the position and orien-
tation of the end-effector in 3D space. In the case of
mobile robots, the position and orientation of the
robot itself must be controlled. In general, the aim is to
achieve a desired pose relative to one or more objects or
cues viewed in the image, for the purpose of inspecting,
grasping or manipulating them, or else to guide robot
navigation through the environment. If the object is
stationary, the task is simply one of static positioning.
For moving objects, the object must be dynamically
tracked so as to intercept or achieve a stable pose relative
to it before its manipulation.

Visual control has been studied extensively for indus-
trial robot arms. While 6-dof control is often sought,
visual servoing of just two or three degrees of freedom
is often sufficient in some applications, and can greatly
simplify controller design. Vision-guided control has also
been applied to mobile robot navigation.

Visual information may be obtained from one or more
cameras. While using a single camera is clearly advan-
tageous in terms of hardware and computational costs,
having two or more cameras makes it possible to acquire
depth and pose information about unknown objects,
through the use of stereo matching algorithms, for
example.

The camera or cameras may be mounted either on the
robot’s end-effector or else at some fixed location in the
environment. Arm-mounted cameras have the advan-
tages of proximity to the task being performed, and
mobility, allowing attention to be focused as needed so
as to avoid occlusion, resolve ambiguity, and increase
accuracy. This can be a drawback, however, since the
field of view depends on the arm location and orienta-
tion, and the focus can change as the camera approaches
the workpiece. Arm-mounted cameras also add weight to
the manipulator, and are subject to collisions. Externally
mounted cameras place fewer constraints on motion

planning, and may be oriented so as to maximize their
field of view. For large workspaces, pan-tilt mechanisms
or multiple cameras may be necessary, at the expense of
calibration accuracy. Also, many movement operations
may be easily formulated in terms of the image by virtue
of the camera moving with the end-effector.

1.2. Previous work

The existing literature on vision-based robot control is
quite extensive, with some of the earliest works dating
back to the early 1970s. Authors have proposed many
working systems and approaches to specific theoretical
and technical aspects in related areas of vision processing
and control, such as stereo vision, pose and depth esti-
mation, camera models and calibration techniques,
image feature selection and processing, trajectory gen-
eration, adaptive control, and dynamic stability analysis.
A comprehensive literature review may be found in the
work by Corke [1].

Despite the significant advances being made in the
field, very few real industrial applications of vision-
guided robotic systems have so far been reported. Most
have been research-oriented and typically only tested in
simulation or on toy problems in simplified laboratory
environments. Examples include picking up a toy train,
inverted pendulum balancing, ball catching, juggling and
ping-pong playing. (The latter three, although complex
dynamic tasks overall, may be considered as simplified
positioning tasks in the sense that they involve only
trajectory tracking of the centroid of a moving ball,
and its interception with a relatively large paddle or
net, as opposed to precise 6D positioning of a gripper
relative to a complex scene.) A few industrial applica-
tions described are automated inspection [2], welding,
sealant application, docking, conveyor-belt picking,
part mating and fruit harvesting. References may be
found in Corke [1]. Successful results for road-vehicle
guidance have been reported by Dickmanns et al. [3]
and Masaki et al. [4]. Feddema [5] discusses the current
status of commercialization of visual servoing tech-
nology and speculates on potential application areas in
the near future.

The current lack of application-driven systems is
perhaps because vision-guided control still has not
been proven sufficiently reliable, robust, useful and
cost-effective for many real-world problems, as postu-
lated by Feddema [5]. While cost is destined to decrease
as hardware is improved, increased reliability and
robustness will depend primarily on a more sophisticated
use of vision. Firstly, better techniques must be devel-
oped for extracting information useful for robot control
from complex, real-world images. Secondly, these
methods must be integrated into complete vision and
control packages including high-level modules for object
recognition, environmental modelling, and task and
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motion planning. An excellent overview of current visual
servoing technology and open issues may be found in the
work by Hagar and Hutchinson [6].

Existing works in vision-guided robot control may be
classified in a number of ways. Here, we will discuss the
state of the art within the context of three important
issues common to all approaches: (1) the type of image
feature information used, (2) the visual feedback repre-
sentation, and (3) the control scheme.

1.2.1. Image features

Practically all works to date have made use of simple
geometric features extracted from images: points, lines,
circles, squares, region areas, etc. The use of point
features appears to be most common, where points
correspond to object corners, holes, centroids of objects
or regions, or specially designed target cues placed in the
scene. Four or more points are generally used, which is
the minimum number necessary to uniquely determine
the pose of an arbitrary object [7]. Point features are used
for pose determination in the works of Abidi and
Gonzalez [8], and Mandel and Duffie [9].

The projection variations of a circle pattern were used
by Kabuka and Arenas [10] in a robot docking applica-
tion, and the centroid and diameter of circles was used by
Harrell et al. [11] for fruit tracking with an orange-
harvesting robot. Vanishing points (intersection of two
nearly parallel lines) and line orientations were used by
Zhang et al. [12] for robot navigation. Chaumette et al.
[13a,13b] and Espiau et al. [13c] derived variations of a
tracking method for points, circles and lines. Weiss et al.
[14] studied visual control using the center of gravity,
area and relative region area of simulated images of
polyhedral objects.

Although approaches based on geometric features
have produced useful results, it cannot be assumed that
a set of simple geometric features can always be reliably
obtained from images encountered in many real-world
situations. Object shape and texture, occlusion, noise
and lighting conditions have a large effect on feature
visibility. The use of more global image characteristics
would therefore seem like a robust alternative to geometric
features. Recently, a number of authors have reported the
use of more global types of image features in visual control
applications. Optic flow [15] has been applied by Allen
et al. [16] and Papanikolopoulos [17]. Corke [18] and
Andersson [19] use first-order geometric moments to com-
pute the target centroid. In all these cases, however, only a
reduced number of degrees of freedom could be controlled.
Bien et al. [13d] and Jang et al. [20] showed how a number
of different global image features could be used within a
general visual control framework. Listed features included
geometric moments, image projections on a line, random
transforms, template matching and Fourier transforms.
Results are given only for simplified tracking tasks using
as features the target centroid and area.

Perhaps the most interesting recent work is that of
Nayar et al. [21]. Using Principal Component Analysis,
an efficient method was developed for compressing a set
of training images into a subspace of eigenvectors using
the pixel gray levels directly as image features. Using a B-
spline interpolation of the same set of images projected
onto this eigenspace, a hypersurface of all possible images
of the object is generated, parametrized with respect to
their coordinates, which allows determining with good
precision the coordinates of images taken from arbitrary
locations. The method was demonstrated for complex,
real images, although for only three degrees of freedom.

Our work demonstrates how global image encodings
such as Fourier descriptors and geometric moments may
be applied to complex, real images to effectively position
a 6-dof industrial robot.

1.2.2. Visual feedback representation

Robots may be controlled either by Cartesian move-
ment commands or direct joint commands. Consequently,
extracted feature information must be converted into one
of these two forms of feedback. It is mainly the complexity
of obtaining this transformation which has given rise to
the wide variety of approaches to vision-based control.
Sanderson and Weiss et al. [22] distinguished between
position-based and image-based methods, depending
on the chosen feedback representation.

In position-based methods, the feature information is
used to compute the relative pose of the robot with
respect to the target object. Cartesian movement com-
mands are then generated from the pose information.
One advantage of this approach is that the problem of
vision processing is decoupled from that of manipulator
control, allowing each to be studied separately. Another
is that the pose estimations may be verified, and the
generated trajectories may be checked for collisions or
kinematic irregularities. The main disadvantages cited
are sensitivity to image noise and computational cost
due to the additional image analysis and inverse kine-
matic calculations required. Another drawback is- the
need for camera modelling and calibration to obtain
the feature projection transformation and the camera-
wrist relationship. Inaccuracies in the camera model
are often a source of control error. While camera calibra-
tion techniques such as that of Tsai and Lenz [23] may be
used to obtain the eye-hand relationship, they add to the
overall computational complexity of the system and can
also introduce inaccuracies.

Researchers have explored a number of different
methods for computing the robot pose from feature
information. Perhaps the most straightforward is to
derive the analytical transformation between the pro-
jections of several object points on the image plane and
their 3D pose, using the known relationship between the
object points themselves, and a projection model of
the camera. This problem is the subject of so-called
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photogrammetric techniques [24,25]. The works of Abidi
and Gonzalez [8], and Mandel and Duffie [9] are typical
examples. Similar transformations have been derived for
other geometric features such as lines or circles [10].

Another approach to 3D pose determination is to use
2D projection transformations together with depth-
estimation techniques. Stereo vision algorithms have
been used for visual servoing by Rizzi and Koditschek
[26], Andersson [19] and Hagar et al. [27]. In a similar
way, depth information may also be derived from
sequential views from a single camera, using techniques
known as monocular stereo, motion stereo or depth from
motion. Examples include the works of Papanikolo-
poulos [17] and Vernon and Tistarelli [28].

In so-called image-based methods, the observed feature
information is used directly as feedback in the manipulator
control law; no pose estimation is performed. The
approach generally taken is to estimate the matrix relating
changes in the camera pose to feature variations in the
image plane, often referred to as the feature Jacobian or
image Jacobian matrix. Although this relationship is
highly non-linear, it is typically linearized within a small
range of the current estimation point, and updated con-
tinuously as the robot moves through the workspace. The
inverse of the feature Jacobian is used in a control law to
compute the camera movements needed to reduce the
error between the desired and observed image features.
The transformation of camera movements to joint com-
mands is obtained by way of the camera-wrist transforma-
tion and the manipulator kinematics.

Methods for computing the image Jacobian include
empirical solution [13,20,29] and estimation within adap-
tive control schemes [14,17,30]. While Jacobian-based
methods have produced useful results in a number of
applications, they impose a similar computation burden
to that of pose-estimation methods, since the image
Jacobian must be continuously updated and inverted.

An attractive approach is to have a system which
learns the nonlinear relationship between the observed
2D feature deviations and the robot movements. Skaar
et al. [31] developed a method for learning the image
Jacobian, by way of least-squares estimation, from
several observations of cues along the approach tra-
jectory. The method was successfully applied to a part-
mating task. Neural networks have been applied in many
areas of robot control, as described by Torras [32].
Hashimoto et al. [33] used a neural network to learn
the direct mapping between the image deviations of four
feature points and the joint angles of a 6-dof manipulator.
A disadvantage to including the inverse kinematics in the
mapping is that the learned relationship is pose-dependent,
i.e. it only applies for positioning with respect to the target
object in a particular location. In the present work, a
neural network is used to learn the pose-independent map-
ping between feature deviations and pose changes based
on images sampled from the workspace.

1.2.3. The control scheme

The speed of robot response is often an important
consideration, especially in applications in which the
robot must track and interact with fast-moving objects.
In the past, the rate at which image processing could be
performed with existing hardware was a limiting factor
in the working speed of most visual robot control
systems. Typically, robots were required to stop for
several seconds after each movement iteration to allow
for the acquisition and processing of each new image.
Such systems are frequently referred to as ‘static look-
and-move’ structures, following the classification intro-
duced by Sanderson and Weiss [22]. They distinguished
between ‘static’ and ‘dynamic’ systems, indicating either
asynchronous or synchronous timing of image processing
and manipulator control, and between ‘look-and-move’
and visual-servoing’ structures, depending on whether
the joints are directly controlled by vision feedback
alone, or in parallel with closed-loop joint controllers.

While static look-and-move control is sufficient in
some applications, real-time dynamic visual servoing is
the focus of much of today’s research in visual control.
Achieving real-time performance requires consideration
of a number of difficult control issues, however, since the
robot’s own dynamics come into play at high speeds,
greatly affecting tracking precision and stability. This is
especially true if the joints are controlled by vision
feedback alone. Dynamic issues in visual control are dis-
cussed by Corke [34]. Robot dynamics are typically
highly non-linear due to frictional and inertial effects,
thus complicating controller design. Adaptive control
schemes are used in some approaches as a means of
compensating for unknown and changing system para-
meters [14,17,30,35]. Neural control has also been suc-
cessfully applied for on-line learning of unknown robot
dynamics and target trajectory prediction by Miller [36]
and Cembrano et al. [37]. A common problem is pro-
viding visual feedback at a sufficiently high rate to the
joint controllers, which generally have very high sam-
pling rates. Image processing rates being significantly
slower in most cases, feedback data are often supple-
mented using trajectory prediction and planning techni-
ques [16,38]. To avoid the additional image analysis time
required for pose estimation, direct image-based feed-
back is often used in visual servoing systems. A common
difficulty is choosing the appropriate features to control
each joint, since feature-pose relationships are nonlinear
and highly coupled. Typical solutions include the use of
feature selection schemes [38] and controlling only a
reduced number of degrees of freedom. Nevertheless, the
advent of faster computing hardware is making high-band-
width, real-time image processing increasingly feasible.

1.3. Our approach

In this work, we present a neural-network-based visual
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positioning system using global image descriptors of
real-world images. The main result is to demonstrate
how neural netwarks may be used with global image
features such as Fourier descriptors and geometric
moments to effectively position a 6-dof robot in a real
industrial environment. Neural networks are especially
suited for learning complex nonlinear functions for which
no explicit analytical formulation is available. Here, a feed-
forward neural network is used to learn the nonlinear
relationship between variations in global descriptors of
the images observed from a wrist-mounted camera, and
changes in robot pose. The complete transformation is
learned directly, with no need for camera calibration,
knowledge of the camera’s intrinsic parameters, or estima-
tion of other intermediate transformations. Furthermore,
the use of global image descriptors makes the method
applicable to real-world images in which simple geometric
features may be difficult to extract, and eliminates the need
for feature matching between the reference and observed
images. This represents a novel and more advantageous
use of the function-approximation capability of neural net-
works for visual robot control than in previous neural
approaches [33,36], in which only point features were used.

The network is trained using a series of example
images taken at known random displacements from a
prespecified pose, relative to the scene, at which a desired
‘reference’ image is observed. It is then used as an image-
based controller to generate cartesian movement com-
mands with which to return the robot to the reference
pose from any arbitrary initial position. Since the main
concern was learning the feature-command relationship
for static scenes, dynamic control aspects were not con-
sidered; a static look-and-move-scheme was used. How-
ever, the method could feasibly be used for dynamic
tracking. The present system was developed primarily
for an industrial inspection application being developed
within the ESPRIT project ‘CONNY’. Nevertheless, the
techniques employed are applicable to other vision-based
control systems.

A first set of experiments involved simulated images
containing four point features. This allowed preliminary
testing of the neural-network approach, and comparison
with previous analytical and neural methods using similar
images [33]. Neural networks trained on four point fea-
tures were used later, in conjunction with a correlation
matching method, to enhance the final positioning
accuracy following servoing with geometric-moment
descriptors.

Subsequently, the use of global image descriptors as
network inputs was explored. Fourier descriptors
were used to encode the external contour of observed
objects, and their variations with respect to those of a
reference image were used as network inputs. These tests
demonstrated the feasibility of using non-geometric
features, and eliminated the need for feature
matching between the observed and reference images.

Positioning results using an industrial robot are
presented.

By encoding images with geometric moments, the
method was extended to complex images in which a
predominant closed contour may not be present. A
series of descriptors based on low and high-order
moments was formulated which effectively quantifies
the image variations produced by 6-dof robot movements.
The variations in the descriptors produced by camera dis-
placements were used to train a feedforward network
as before. Results are presented for the industrial robot.

Final positioning accuracy was increased by way of a
second positioning step using neural networks trained on
four point features, using a correlation method for
feature matching. Results from a series of positioning
trials using the industrial robot are given.

2. Four point features
2.1. Image generation

For initial experiments, a simulated reference image
was generated consisting of four point features. These
points can be imagined as four distinct features extracted
from the image of a real object, and were chosen based
on the assumption that four points suffice for deter-
mining the position and orientation of an arbitrary
3D object (see, for example, Horaud et al. [7] Abidi
and Gonzalez [8]). The four feature points were
arranged to form a square of width 100 mm in the
simulated ‘scene’, as shown in Fig. 1. The reference
position chosen was with the camera’s viewing axis per-
pendicular to the center of the square formed by the
four points, at a distance of 750 mm.

A software simulator was developed to model the
projected images that would be seen from a CCD
camera mounted on a robot arm. This ‘moveable-camera
simulator’ allowed the rapid generation of realistic
training sets for varying object and camera characteris-
tics, and the subsequent testing of neural networks
trained on these data by simulating the movements
the robot would make in 3D space to approach the
pre-defined reference position and displaying the
resulting images. The model used for the simulated
camera was the well-known ‘pinhole’ projection model,
as illustrated in Fig. 1. The model equations may be
found in Abidi and Gonzalez [8].

2.2. Neural network training

Training examples were generated by choosing 1000
random camera poses within the ranges —50 to 50 mm
translation and —3 to 3 degrees rotation for all three
coordinate axes (which ensure that the four points are
always visible in the resulting images) and generating the
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Projected point
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at image coordinates:
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Camera frame
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Object features

o Projection plane
X ]
: at z.=-f

Fig. 1. The pinhole projection camera model used to generate simulated 4-point images.

corresponding images of the four projected feature
points using the simulated camera program. The x, y-
coordinates in the reference image of the four points
were subtracted from those in the observed image to
produce 8 feature ‘offsets’, which were used as the inputs
to the neural network. The desired outputs of the neural
network were the 6 cartesian coordinates (position and
orientation) of the simulated camera, with respect to the
reference frame, from which the observed image was
viewed. An additional test set of 250 randomly generated
images was used for training validation.

These data were used to train a 3-layer backpropaga-
tion network with eight inputs, 30 hidden units and six
outputs. (An introduction to neural networks, including
backpropagation learning, may be found in [13a] and the
work by Wells [39]). The network was used with a tanh
activation function in the hidden layer, a linear output-
layer transfer function, and the delta learning rule.
Training was continued until no further decrease in the
RMS output error for the test set could be achieved,
which occurred after approximately 200,000 training
iterations. The final RMS error was 0.18.

2.3. Visual positioning tests

Once trained, the network was used in an iterative
visual positioning scheme to test its ability to guide the
camera back to the reference position from any given
initial position and orientation. This process is illustrated
in Fig. 2. The camera is first placed at a randomly
selected initial position in the vicinity of the reference
position. The feature offsets are computed for the four
points in the resulting image and input to the neural net-
work. The network outputs a vector of six coordinates

representing its estimate of the current camera position
and orientation. The camera is then ‘moved’ toward the
reference position in the negative direction of these coor-
dinates. The new image and feature offsets are computed
at this new camera position. The average relative change
in the image offsets is then calculated as the absolute
value of the difference between the averages of the
eight offsets in the current and previous iterations. If
this value is below a prespecified convergence threshold,

Image
after 1
» h 3 »
Initial approac » s | Reference image
Image movement =
i - - » » [ Finalimage
- - - »

Random VY O, @
initial \ ‘:
Final position

position

" Object

Fig. 2. Visual positioning of a robot-mounted camera using iterative
approach movements.
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the process is stopped. Otherwise, approach movements
are continued until this condition is met.

In initial tests, it was observed that the method often
converged to positions in which the observed image very
closely resembled the reference image (2D error < 0.5
pixel), but which were somewhat displaced from the
reference position (3D translation error < 12 mm, rota-
tion error < 1.5 degrees). Upon closer inspection, it was
discovered that many images resulting from translations
on either the x or y axis were almost identical to those
resulting from rotations around the opposite axis. In
fact, it may be demonstrated analytically [9] that multiple
solutions exist for pose determination based on four
planar points. This ambiguity in the data accounted for
the relatively poor training results, and for the significant
3D positioning errors obtained in the tests, a problem
which was solved by simply moving one of the four
points perpendicularly back away from the plane of the
other three by a distance of 100 mm, giving more relative
depth to the four features of the simulated ‘object’. Using
the image data base computed with this new feature
arrangement, the network training time was reduced to
only 80,000 iterations, with a final RMS output error of
0.03. This improved feature arrangement was main-
tained to produce the test results shown here.

Generalization test results are shown in Table 1.
Column 1 shows results for initial positions within the
same range of displacement from the reference position
as used for training. Columns 2 and 3 show generaliza-
tion results for 2 and 3 times this range. Values are
averages for 100 random initial positions, and standard
deviations are shown alongside. The convergence thres-
hold (average 2D error variation at final iteration) used
was 0.001 pixel. The final average 2D positioning error in
the image was 0.30 pixel, and the final average 3D posi-
tioning error was 1.51 mm translation and 0.11 degrees
rotation (averages for the three coordinate axes), after an
average of eight movement iterations. For initial positions
within a range of displacement from the reference position
two and three times larger than that used to generate the
training images (columns 2 and 3), the network generalized
quite well and was able to achieve the same final position-
ing accuracy in just a few more approach movements in the
case of generalization ratio = 3.

Table 1
Generalization test results for 4-point images
Generalization 1 2 3
ratio

mean  std mean std mean std
2D error (pixels) 0.30 007 030 0.07 0.32 0.08
3D T error (mm) 1.51 0.55 150 0.59 1.58 0.63

3D R error (deg) 0.11 005 0.10 005 0.10 0.05

Movements 8 6 7 5 10 6

A rough comparison may be made between these results
and those of other authors based on both analytical and
neural methods. Hashimoto et al. [33], with their similar
neural method using real four-point images, obtained final
2D positioning errors of 14 pixels for a network trained on
large offsets (approximately the same ranges as those used
here), which was reduced to seven pixels with a network
trained on offsets in a range 20% as large as the first. No
3D error values were given. These relatively large errors
could be due in part to the small size of the training sets
used (60 examples). Our training set size was chosen so as
to include at least the number of possible combinations of
three offset values one each of the six axes (one positive,
one zero, and one negative value), meaning 3° = 729
examples, which would seem like the minimum number
needed to approximate the function reasonably well over
the entire workspace. Although the values given in Table 1
are for simulated images, we later obtained the same pre-
cision values for real images (see the section concerning
Fine Correction Using Point Features). In the case, the
average 2D error was also less than 1 pixel, which was
the resolution of the vision system.

Quantitative comparison with results of analytical
methods is more difficult due to the scarce data provided
by their authors. Mandel and Duffie [9] analytically esti-
mated the transformation matrix relating the 2D image
coordinates of four feature points with robot pose, but
only gave final error values for 7z of 5.43 mm and an
average value for rotation of —0.32 degrees. Abidi and
Gonzalez [8] described a similar method, which they used
to robotically insert a nozzle with a flared rim into a
slotted receptacle, correcting the final position through
force control during the insertion. Although no final
positioning errors were given (neither 2D or 3D), a
rough idea of the 3D error may be obtained as the dif-
ference between their initial estimate of the desired pose
and the subsequently corrected estimate for the single
experiment they presented. The differences for the six
axes are: Tx,y,z=7.1, 7.1, 8.4 mm, and Rx,y,z =

3.05, 0.0, 2.6 deg. This does not provide any information

about the actual 3D error following the second pose
correction, however.

3. Fourier descriptors
3.1. Image generation

In this set of experiments, the geometrical image
features were substituted with global image descriptors
as inputs for the neural network. Images were restricted
to simple objects, highly contrasted with respect to the
background, for which it was possible to extract an
external silhouette. Fourier descriptors were used to
encode the shape of the resulting closed contour.

In tests using a real robot/camera system in a real
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environment, various simple objects were used, such as a
small water valve. The objects were placed on a white
translucent table illuminated from below to enhance
contrast.

A 6-axis manipulator (GT Productique) with a camera
mounted on its end-effector was used to acquire images
in the real environment. A control program, imple-
mented on a Sun workstation, digitized images at a rate
of 40 ms per image and sent positioning commands to the
robot in cartesian coordinates. Inverse kinematic calcu-
lations were performed by a low-level controller running
on a PC linked to the Sun workstation by a serial port.

3.2. Image processing

Before computing the Fourier descriptors of the real
images, several preprocessing operations were performed
on each image to extract the external contour of the
object. The image was binarized with an adaptive thres-
hold, and connected components were then computed.
The biggest object (excluding the background) was
identified, and its external contour was extracted.

The shape of the silhouette was encoded by sampling
512 equidistant points along the contour and calculating
their Fourier descriptors. Each 2D point U,, may be
considered a 2D vector in complex space (U, =
Xm = J¥m)- The Fourier descriptors are defined as:

1= 2 nm/ N
D =— U. e~J2mnm
v= 2 Une (M)
where we take n=(-16,...,-1,0,1,...,15,16). This

defines a list of 33 descriptors which encode the low-
frequency content of the shape. Only these descriptors
were used since, on the one hand, the neural network
required a fixed number of inputs, and on the other,
the remaining coefficients correspond to higher frequen-
cies which encode very fine details in the shape, which
can often include unwanted image noise.

It may be observed that these coefficients are not
invariant to basic geometrical transformations such as
translation, rotation and scaling, nor to the initial
point chosen on the contour at which to begin the
calculation. In pattern recognition applications, it is
usually desired to normalize the Fourier coefficients so
as to make them invariant to geometric transformations.
For visual servoing, however, variance to translation,
rotation and scaling must be preserved, and to avoid
matching between the observed and reference images,
invariance to the starting point on the contour is desired.

Invariance to the starting point may be achieved by
observing the effect of shifting the starting point by an
arbitrary number of points, &, so as to obtain a new set of
points U,, defined by

Up = Um+kymod v. (2)

The Fourier descriptors become
D! = D, e?/mkn/N. (3)

Consequently, the original Fourier descriptors D, may
be recovered by simply multiplying each descriptor D, by
e—2j7rkn/N.

Since the phase angle ®) of the first coefficient D] is
equal to

o =— 4)
the original coefficients may be expressed as
D, =D.e "% (5)

which are invariant to shifting the starting point by any
arbitrary number of points k.

3.3. Neural network training

Training sets of real images were generated for the
neural network by choosing 500 random initial poses in
the vicinity of the reference position, in this case within
the ranges of —25 to 25 mm translation and —15 to 15
degrees rotation for the three coordinate axes. The
reference position was chosen arbitrarily so as to have
the camera centered perpendicularly above the object’s
surface, at a distance of approximately 550 mm. The
center of rotation was a point centered 550 mm in
front of the camera on the optical axis (near the object’s
surface), which helps maintain the object within the field
of view. A translational component is therefore derived
from the rotations around the two horizontal axes,
making the actual maximum ranges of Tx and Ty
equal to +[25 + 550 sin(15)] = £167 mm.

For the observed image at each pose, the closed con-
tour of the object was extracted as explained above, and
a set of 512 equidistant points were sampled from the
contour to compute the Fourier descriptors. The net-
work inputs were simply the differences between each
of the corresponding normalized Fourier coefficients
(66 terms for 33 complex coeflicients) for the reference
and observed images. As with the four-point images, the
desired outputs were the six cartesian coordinates of the
camera. A set of 500 additional randomly generated
images were used as a test set for training validation.

These data were used to train a 3-layer backpropaga-
tion network as before, but with 66 inputs, 30 hidden
nodes and six outputs. Training was performed for
3000 training-set passes, after which the final RMS
error for the test set was 0.03.

3.4. Visual positioning tests
The trained neural networks were tested using the

same iterative visual positioning scheme as in the four-
point experiments. Due to the slow speed of the serial
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Table 2
Final positioning error for 10 servoing trials using a backpropagation
network trained with Fourier descriptors

Axis Valve

32 FD

mean std
Tx (mm) -0.2 1.7
Ty —0.6 22
Tz 0.1 1.2
Rx (deg) -0.2 1.8
Ry 0.7 2.1
Rz 0.0 0.9

communication link used in the image-processing setup,
however. statistics were computed for just 10 servoing
trials. The 10 initial positions were chosen within the
same ranges of displacement as used for training. Each
trial was stopped after 10 approach movements, after
which no further convergence could be observed,
although in general five or six movements were sufficient.

The average and standard deviation of the robot dis-
placement along each of the six axes during the final
(10th) movement are shown in Table 2. Ideally, both
should approach zero, indicating convergence to a stable
pose — presumably the reference pose. The absolute
mean values for rotation were below 0.7 degrees, and
below 0.6 mm for the translation axes. The standard
deviation values are used as a measure of the final posi-
tioning errors, since they indicate the degree of variation
between the final position of different trials.

From Table 2 it is evident that the positioning
errors were significantly higher for translation and
rotation on the x and y axes than on the z (optical)
axis. The error values for Tx and Ty represent a 7-9%
error with respect to the full range of possible trans-
lational displacements, while the error for 7z represents
a 5% error. Keeping in mind that the center of rotation
used is displaced 550 mm from the wrist, the actual trans-
lational displacements from the reference pose of the
camera are somewhat higher than these values for
axes x and y, since an additional translational compo-
nent is derived from the rotational errors around these
axes. As for the rotational errors, Rx and Ry represent a

Pose:
Rx 0
Ry 3.8°
Rz 0
Tx0
Ty 0
7z 0

12—-14% error with respect to the full range of rotational
displacements used, while the error in Rz represents only
a 6% error.

The higher positioning errors for axes x and y are
believed to be due to ambiguities between the image
variations produced by translations on either axis and
rotations on the opposite axis — the same problem as
discussed above for the simulated four-point images.
In the latter case, translational and rotational move-
ments could be disambiguated by simply varying the
locations of the points in order to add more relative
depth to the image, which would be equivalent to
selecting feature points at different depths in the image
of a real object. The solution is not so straightforward
when global image features such as Fourier descriptors
are used, however, since the feature locations are
inherent to the image itself and cannot be chosen
explicitly. While it is possible that objects of different
shape and appearance might produce more unambigu-
ous image variations for rotations and translations on
the x and y axes, it was clear for the objects used here
that many images taken at different poses were nearly
indistinguishable to the eye, as may be seen in the two
images of Fig. 3.

Note that rotations and translations on the z (optical)
axis produce unique image variations — simple rotation
of the object in the image plane and global change of
scale, respectively — which cannot be easily confused
with the effects of movements on any other axis. Con-
sequently, error values are lower for the movements on
the z axis.

An example of visual positioning with respect to a
real object (a water valve) is illustrated in the photo-
graphs in Fig. 4. The accurate 2D convergence of the
observed images onto the reference image is easily seen.

4. Geometric moments

4.1. Motivation

To make the neural visual positioning method
applicable to more general classes of images, a more
flexible type of image descriptors must be used. Fourier

Pose:

Rx 0

Ry 0O

Rz 0

Tx —5.8 mm
Ty 0

Tz 0

Fig. 3. Example of two nearly identical images taken from two different poses, giving rise to ambiguity in the set of training images.
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g h

Fig. 4. Visual positioning with respect to a water valve, using Fourier descriptors of the object contour. The sequence shows the reference, initial and
final images, and the superimposed contours of the reference and current image at several steps of the positioning process. Note that positioning is
possible even when the object lies partly outside the image. (a) Robot and camera, (b) reference image, (c) initial image, (d) initial contours, (e) after 1

movement, () after 5 movements, (g) after 7 movements, (h) final image.

descriptors require that the object’s external contour be
clearly visible and distinguishable from the image back-
ground, which is not always the case, as when large
objects are viewed at close range. Geometric moments
do not have this restriction, since they are used to encode
the image as a whole. They are similar to Fourier descrip-
tors, however, in that finer degrees of image detail may
be encoded by computing moments of successively
higher order. Consequently, they are very compatible
with the neural learning approach, since a fixed number
of moments may be selected to encode the most impor-
tant characteristics of the image and used as network
inputs. Although computationally intensive, efficient

algorithms [40,41] and even specialized hardware [19]
are available for fast moment computation.

4.2. Image acquisition

Experiments with geometric moments were first
performed using the same set of images of the water
valve (with external contour) as used in the Fourier
descriptor experiments. This allowed the performances
of both methods to be compared. In later tests, close-
range images of an automobile cylinder head were
used, which provided a set of coarsely textured images
with little or no visible background.
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The robot/camera system used was the same as before,
except that, in this case, two cameras approximately 10
cm apart were used to acquire ‘stereo’ image pairs. This
was found to improve positioning performance by up
to 15% on some coordinate axes and to help prevent
divergence when positioning is begun from poses rela-
tively far from the reference pose. Due to the sensitivity
of geometric moments to variations in pixel grey levels, a
controlled lighting arrangement was used in which light
was reflected off a white ceiling above the work area,
which was enclosed in a black curtain. This ensured con-
trast and relatively uniform illumination of the object
from all directions.

4.3. Preprocessing operations

Before computing geometric moments, several pre-
processing operations are performed on the images for
filtering and normalization purposes. Images are first
processed with a Prewitt filter to obtain the derivatives
of the grey-level values. The result is a highly filtered
image in which only the feature boundaries are visible
and highlighted. The images are then normalized with
respect to their mean grey-level value to minimize the
effects of any lighting variations between images.

4.4. Geometric moment computation

From the filtered and normalized images, a series of
descriptors involving geometric moments is computed.
The general formula for geometric image moments is
given by

mi; = Z inyjf(x,y) (6)
x y

where m;; is the moment of order ij, x and y are the
coordinates of each pixel in the image, and f(x, y) is the
grey-level value of the pixel (although here the derivatives
of the grey-level values are used). By giving different values
to orders i and j, several important characteristics of the
image may be encoded. For example, my, is the total
‘mass’ of the image, and my, and m,, are the moments
of ‘inertia’ around the x and y axes, respectively.

While, for pattern recognition applications, moment
invariants are typically used to recognize image features
regardless of the viewing position, for visual servoing it is
desired that the moments have a variant relationship with
respect to the camera pose. In the present work, ten
descriptors involving moments were chosen which were
believed to best quantify the variations in the object’s pro-
jection in the image when the camera pose is varied on any
of its 6 axes. The first two descriptors are the x and y
coordinates of the image centroid, which is clearly variant
with camera translation parallel to the image plane:

X =m/my x coordinate of image centroid. (7)

7 = mygy/my vy coordinate of image centroid. (8)

To represent the rotation of the object in the image
plane, the angle of rotation of the principal axis of inertia
may be used. This quantity may be derived from the
eigenvectors of the matrix

My —my

= 2
—my Mo

where 11, My and Mg, are central moments, defined with

respect to the centroid of Eqgs. (7) and (8) as:

m;; = ZZ(X - %) (v = Pf (%) (10)

The eigenvector v corresponding to the largest eigen-
value )\, of matrix (9) gives the direction of the main
inertia axis. The elements of v are used as descriptors:

v, x component of main inertia axis. (11)

v, y component of main inertia axis. (12)

The scaling of the object, due primarily to camera trans-
lation along the optical axis, may be quantified by the
radii of the major and minor inertia axes. These are
derived from the eigenvalues, A\; and A,, of matrix (9):

r = HL radius of major inertia axis. (13)
Moo

ry =4/—% radius of minor inertia axis. (14)

Moo

Thus, the six expressions given by Egs. (7), (8) and (11)—
(14) are used to quantify the image variations resulting
from six possible camera translations and rotations.

Since somewhat unsatisfactory results were obtained in
initial servoing experiments using just these six descriptors,
the four third-order moments, mag, My, My, and mg3, were
added to more sharply characterize the image. The varia-
tions in these ten descriptors with respect to a reference
image are used as inputs to the neural network, which
learns to map them to the applied 6D camera movements.

4.5. Training-set generation

Training data for the neural networks were generated
from images taken from the wrist-mounted cameras at a
series of random known poses within a limited range of a
predefined reference position. The reference pose was arbi-
trarily chosen at a point centered approximately 550 mm
above the object. Random poses were selected within a
range of —25 to 25mm translation from the reference
pose, and between —15 and 15 degrees rotation for all
coordinate axes, where the center of rotation was a point
centered 550 mm in front of the two cameras as before.

Stereo image pairs were taken at 750 poses for both the
valve and the cylinder-head scenes. After preprocessing,
the 10 geometric-moment descriptors were computed for
each image as described above. The differences between the
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corresponding descriptors in the observed and reference
images were used as network inputs. The desired network
outputs were the six relative cartesian coordinates corre-
sponding to the applied movement of the robot from the
reference pose to the current pose. Consequently, each
training example consisted of a 20-element input vector
(10 values for each camera) and the associated 6-element
output vector. Sets of 250 additional ‘stereo’ images of both
scenes were used as test sets for training validation.

4.6. Neural network training

The data for each scene was used to train a 3-layer
backpropagation network. While, in previous experi-
ments, the number of hidden nodes and training
examples were chosen rather arbitrarily, having decided
upon geometric moments as the descriptors to be used
in the final industrial application called for a more
systematic selection of these parameters in order to opti-
mize performance. The hidden-layer size, activation
functions, and other training parameters were selected
empirically through systematic experimentation, as
summarized in Wells and Venaille [42].

Hidden layers of 10, 20, 30, 40, 50 and 60 nodes were
tested. A minimum of 30 hidden nodes were found neces-
sary for the valve data, and 50 for the cylinder head. In
both cases, reducing the number of nodes by 10 increased
the final error for the test set by 2-3% and steadily
increased with fewer nodes. Adding more nodes noticibly
slowed down training and produced a negligible reduction
in the final error.

The minimum training set was determined by com-
paring training results using 500, 750, 1000, 3000 and
10,000 examples. Training times were unacceptably slow
for more than 1000 examples, with no significant improve-
ment in performance for more than 750. The final training
error was only slightly higher with 500 examples, but 750
(at least 729) were finally maintained for the reasons
explained above for four-point images.

Of the possible combinations of sigmoid, tanh, sine
and linear functions, a tanh function in the hidden
layer and a linear function in the output layer produced

Table 3
Final positioning errors for 10 servoing trials using neural networks
trained with geometric-moment descriptors

Axis Valve Cylinder head

22 GM 22 GM

mean std mean std
Tx (mm) 04 1.6 -19 29
Ty -0.3 2.0 —-14 3.1
Tz 0.4 14 -1.0 2.6
Rx (deg) -0.1 4.0 -0.5 1.8
Ry 0.3 1.3 -0.7 1.7
Rz 0.1 0.1 -0.3 0.7

e

Fig. 5. Visual positioning with respect to an automobile cylinder head,
using geometric-moment descriptors of the image. The sequence shows
the reference image and current image after three of a series of five
movements, along with a 2D representation of the major and minor
inertia axes of each image, where the circles correspond to the axes
endpoints in the reference image. (a) Reference image, (b) initial
image, (c) move 1, (d) move 3, (¢) move 5.
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the best training results for both sets of data. The
‘Quickprop’ variant of the backpropagation learning
rule was used, which provides automatic adjustment of
the learning rate. Training convergence was achieved
after 10,200 passes through the training set.

4.7. Visual positioning tests

The trained neural network was tested in a series of 10
positioning trials as before, for both the water valve and
the cylinder-head objects. From the results shown in
Table 3, it may be seen that positioning accuracy for
the water valve is approximately equivalent to that
obtained using Fourier descriptors, including the higher
error values for movements on axes x and y, presumably
for the same reasons as described above.

Errors are somewhat higher, however, for movements
Rx using geometric moments (4.0 mm) than for Fourier
descriptors (1.8 mm). Apparently, the geometric-moment
descriptors used are less able to disambiguate rotational
movements around the x axis for this particular object,
which is likely due to the fact that these movements are
perpendicular to the line of stereo separation in the hon-
zontal plane, and are therefore less disambiguated by the
stereo configuration of the cameras, the effect being addi-
tionally compounded by the high degree of symmetry of the

valve object around the x axis in the image. If the valve had
been rotated 90 degrees, the results would likely have been
interchanged for axes x and y, but this was not verified. The
cylinder head is more asymmetric around both the x and y
axes, and the positioning errors for Tx, Ty, Rx and Ry are
correspondingly very similar. In both cases, convergence to
a stable pose was achieved after an average of 5-7 move-
ments.

The images observed during a typical positioning trial
using geometric moment descriptors are shown in Fig. 5.
A 2D representation of the position and orientation of the
major and minor inertia axes of each image is included to
facilitate comparison of each image with the reference
image. Graphs of the movements made along each of the
6 robot axes during the positioning trial of Fig. 5 are
shown in Fig. 6.

4.8. Additional tests

The final precision achieved with geometric moments
represents an average reduction in the positioning error
of approximately 90% with respect to the full range of
initial pose displacements used. While these results may
be judged as quite good, considering the high ‘compres-
sion ratio’ of the image descriptors used, the small size of
the images (i.e. low resolution), and the relatively large
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Fig. 6. Movements made along each of the six robot axes during the positioning trial of Fig. 5. ——: dRz; - -- - dRx; - — —1dRy; - — -: dTz; — —:

dTx; — —: dTy.



728 G. Wells et al./Image and Vision Computing 14 (1996) 715-732

distance between the camera and the object, it is clear
that there is considerable room for improvement.

Several variations were tested in an effort to increase
the precision. In one test, the 2nd, 4th and Sth-order
moments were added to the image feature vector (14
additional descriptors). This resulted in a 4% training
improvement, but little noticeable improvement in
positioning performance. Although adding moments of
even higher order could be imagined to further enhance
precision, the addition of more network inputs makes
training increasingly slow.

The benefit of formulating the first six descriptors so as
to relate them with physical quantities was verified in
another experiment, in which only the two coordinates
of the centroid and the moments of orders 2 through S
were used as network inputs. It can be imagined that the
neural network might learn equally well the direct impli-
cit association between variations in the raw moments
and pose changes. However, it was found that the
precision is from 6-12% better when these specially
formulated descriptors are included.

Increasing the stereo basis from 10 to 20 cm was found
to have little effect on results. One likely way, though not
yet tried, to improve precision could be to train a second
neural network using image data sampled at a higher
resolution and then perform a second ‘fine-positioning’
step. This could be done by collecting images within a
smaller range of pose displacements, and possibly also
zooming in on the object and computing geometric
moments for the resulting close-range images. A multi-
resolution approach of this type (without zooming in)
was used in the neural approach, based on four point
features, of Hashimoto et al. [33] with positive results.

5. Fine correction using point features

As seen above, neural-based visual positioning using
Fourier descriptors or geometric moments allow position-
ing to approximately 3 mm translation and 2 degrees rota-
tion of the desired pose. While further refinements in the
method may eventually increase the precision attainable
with these image descriptors alone, time limitations in
the CONNY project required that a reliable method be
developed to enhance the precision following the initial
positioning step using global descriptors. To this end, a
neural fine-correction step was developed based on the
four-point-feature method described above. With it, the
final precision may be increased to approximately 2 mm
translation and 0.1 degree rotation, which were within the
performance specifications required for the industrial
inspection application being developed by Thomson.

The fine-correction method consists of specifying four
feature points in the reference image, and then training a
neural network to relate the x, y displacements of these
points in the image with arbitrary pose displacements of

the camera within the workspace. In operation, a simple
correlation method is used to find the matching four
points in the current image, their offsets are computed,
and the network gives the corresponding pose correction.

The location of the four feature points in the reference
image is arbitrary, but should be chosen carefully so as to
reduce the possibility of multiple matches. Each of the
four points defines the center of a small ‘reference win-
dow’, w, as shown in Fig. 7. In the observed image, four
larger ‘search areas’ are defined, each containing an area of
the same size and location as one of the reference windows
in the reference image. Then, a ‘correlation window’, P, of
the same dimensions as the reference window is displaced
to all possible coordinates m, n within the search-area, and
the following correlation function is computed at each
location:

ZZ(Pm,n(x’y) - Pm,n)(w(xry) - W)

R(m,n) = 7
(Z Z(Pm,n(x,y) - Pm,n)z)
x y

where w(x, y) and P(x, y) are the pixel grey-level values in
the reference and observed images, respectively. The cor-
relation values are centred around the mean grey-level
values w and I_’m,,,, which increases the robustness of the
method to noise and variations in image intensities.

The coordinates m, n at which the correlation window
produces the maximum correlation value, max,, , R(m, n),
is labelled as the observed point which matches the corre-
sponding reference point in the reference image.

The dimensions of the search and correlation windows
should be chosen small enough to maximize speed while
not compromising matching performance. The images used
in these experiments measured 128 x 128 pixels. The refer-
ence and correlation windows had dimensions 16 x 16
pixels, and the search area was 32 x 32 pixels in size.

(15)

5.1. Fine-correction tests

A series of 15 positioning tests was performed using the
network trained with four-point-feature data. Training
parameters and performance were similar to the values
given above for experiments with four point features.
The training set consisted of 750 images, the test set had
250 images, and the range of pose displacements used for
training-set generation and testing was 20% of that used
for the geometric-moment data: +5.0 mm translation and
+3.0 degrees rotation.

As seen in the results of Table 4, the fine correction step
allows an improvement in positioning accuracy to below
2.2 mm translation for Ty and 0.1 degree rotation on all
three axes. The error for Tx is somewhat lower, 1.9 mm, by
virtue of the stereo camera configuration, and the accuracy
for Tx reaches 0.1 mm. The robot converged to a stable
pose in an average of 5.9 movements (std = 6.7). Note that
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Fig. 7. Windows used in the correlation method.

these values are in good correspondence with those
obtained for simulated four-point images (Table 1).

Due to the limited resolution of the images used here,
the final error values in Table 4 represent the highest
obtainable precision with this method under these
experimental conditions. The maximum 2D resolution
was 1 pixel, and in all the servoing trials, the final 2D
error converged to zero, thus limiting the 3D errors to
the values shown here. This would suggest that the pre-
cision could be improved even further by increasing the
resolution, either by using larger images or by using a
multi-resolution approach as described above. This
could be the subject of further research.

It must also be pointed out that, although using point
features and correlation matching allows a higher posi-
tioning accuracy than either Fourier descriptors or geo-
metric moments, it is not entirely feasible to perform
visual positioning based on this method alone, since cor-
relation matching requires that the object rotation be less
than 10 degrees on all axes. Consequently, this method
may only be applied once the positioning error has been
sufficiently reduced by some other technique.

Fig. 8 shows the sequence of fine-correction move-
ments performed using four-point features immediately
following the positioning sequence with geometric
moments shown in Fig. 5. Although differences in the
images themselves are barely noticeable to the eye, the
small differences are evident in the 2D representation
showing the relative coordinates of the four points in
the reference and current images.

Graphs of the movements made along each of the 6

Table 4
Final positioning errors for 15 servoing trials using neural network
trained with 4-point feature data and correlation matching

Axis Cylinder head

4-points

mean std
Tx (mm) 0.2 1.9
Ty 0.1 22
Tz 0.2 0.1
Rx (deg) 0.0 0.1
Ry 0.0 0.1
Rz 0.0 0.1

e

Fig. 8. Fine position correction using 4-point features, following the
positioning sequence with geometric moments of Fig. 5. The sequence
shows the reference image and current image after three of a series of
five movements, along with a 2D representation of the coordinates of
the four points in the reference (shown as ‘X’) and current (shown
as ‘+’) images. (a) Reference image, (b) initial image, (c) move 1,
(d) move 3, (¢) move 5.
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Fig. 9. Movements made along each of the 6 robot axes during the positioning trial of Fig. 8. ——:dRz;----:dRx; — — —:dRy; — —-:dTz; — —: dTx;

— = dTy.

robot axes during the positioning trial of Fig. 5 are
shown in Fig. 9.

6. Conclusions

In this work, we have reviewed the current state of the
art in vision-based robot positioning, and have described
a novel method for visual positioning of a 6-dof mani-
pulator based on neural learning and global image
descriptors. The method takes advantage of the approxi-
mation capabilities of backpropagation networks to
learn the complex mappings between variations in global
image encodings, such as geometric moments and
Fourier descriptors, and the displacement of the 6-dof
robot from a desired pose. By using global image descrip-
tors, the typically problematic steps of extraction and
matching of geometric features are eliminated, making
it possible to position the robot with respect to arbitrary
real scenes. In addition, neural learning makes it possible
to obtain the direct mapping between image variations
and the robot pose, avoiding explicit camera modelling,
calibration and all other intermediate transformations
entirely, reducing the computational burden and elimi-
nating possible sources of estimation error. Nor is any
explicit pose information required, since the desired pose

is specified simply as a reference image, and the neural
controller learns the relative displacements of the robot
from the pose where this image is initially observed.
Experiments performed so far have shown that it is
possible to obtain final positioning errors of approxi-
mately 3 mm translation and 2 degrees rotation using
geometric moments of Fourier descriptors alone (with
the camera approximately 550 mm from the object).
These values may be decreased to less than 2.2 mm and
0.1 degree when a subsequent correction step is applied
using a neural network trained with four point features
in conjunction with a correlation matching procedure. In
subsequent tests {43], both the geometric-moment and
fine-correction steps of the positioning method have
shown to be very robust with respect to different pertur-
bations such as lighting variations, generalization out-
side the range of training poses, image noise and object
defects. The method has proven to be particularly robust
to even severe cases of partial occlusion, converging
to the desired pose from initial poses in which large
portions of the object were not visible, either because
they were occluded by other parts of the object, or else
fell outside the image boundary. In fact, occlusion is
basically unimportant, since the neural network has
learned to associate the global ‘appearance’ of the image
(as opposed to locally visible features) with pose over the
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entire workspace. Analytic feature-based methods would
generally fail in these cases unless provided with a 3D
object model or special mechanisms for dealing with
missing features.

Although the precision achieved using global descrip-
tors was quite satisfactory for the visual inspection appli-
cation developed here, further refinements are needed in
order to approach the precision provided by local-
feature techniques, as demonstrated by the point-based
fine-correction method. A significant disadvantage of
low-order geometric moments in particular is that they
group large amounts of diverse pixel information into
single values, thus losing most of the local fine-detail
information and resulting in excessive similarity between
many of the training images. Including higher-order
moments might add needed resolution to the training
set, although the number of moments becomes larger
as their order is increased. Precision might also be
enhanced by means of a ‘multi-resolution’ approach, in
which a second fine-positioning step is performed using a
neural network trained on closer-range images within a
smaller range of movements.

Further extensions could include improvement of the
control scheme to provide continuous motion of the end-
effector for applications requiring dynamic tracking.
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