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Abstract

A method for estimating mobile robot egomotion is presented, which relies on
tracking contours in real-time images acquired with a calibrated monocular video
system. After fitting an active contour to an object in the image, 8D motion
is derived from the affine deformations suffered by the contour in an image se-
quence. More than one object can be tracked at the same time yielding some dif-
ferent pose estimations. Then, improvements in pose determination are achieved
by fusing all these different estimations. Inertial information is used to obtain
better estimates, as it introduces in the tracking algorithm a measure of the real
velocity. Inertial information is also used to eliminate some ambiguities arising
from the use of a monocular image sequence. As the algorithms developed are
intended to be used in real-time control systems, considerations on computation
costs are taken into account.

1 Introduction

In feature-based techniques, points have been the traditional source of infor-
mation for image-based tracking algorithms. More complex structures such as
lines and corners have also been used. Recently, active contours fitted to image
objects have been proposed as tracking features [1], especially in applications
not requiring a high precision, as it is the case of robot navigation. Tracking
active contours provides an estimate of robot position and orientation (”pose”,
for short), by relating it to the changes of the contour projection in the image
plane. A calibrated monocular vision system is used and the image projection
is modeled using the weak-perspective camera model.



The algorithm for pose recovery has the following four steps. First, the ac-
tive contour has to be initialized. One common way to represent active contours
is by using b-splines [2]. In this work, initialization of the b-spline is manually
performed by an operator. When corners are present, the use of a corner detec-
tor [3] improves the initial adjustment. Automatic initialization techniques have
been proposed [4] and tested with good results. Since we are assuming weak
perspective, only affine deformations of the initial contour will be allowed by the
tracker and, therefore, the initialization process is important as it determines
the family of affine deformations that the contour will be allowed to adjust to.

Second, a tracking algorithm recognizes the new position of the contour in
the image and computes the change in position. A Kalman filter is used to
integrate this new measurement with the history of previous ones. Since an
affine deformation of a b-spline can be parameterized using a shape vector [5],
this is used as the state vector for the filter. The shape vector is a set of 6
parameters representing the deformation of the b-spline independently of the
complexity and the number of control points of the b-spline used. Tracking
one contour provides an estimation of its shape vector S and its associated
covariance matrix I'g.

The tracking strategy is here enriched by using information provided by
inertial sensors. Tracking at low velocities is known to be a favorable case,
while tracking usually fails at high velocity rates. Using the good conditioning of
inertial sensors precisely to detect relative high velocities, the tracking algorithm
is improved by introducing the measured dynamics.

Third, from the shape vector S, the 3D camera pose is computed. It has
been proved [6] that it is possible to obtain rotation and translation information
from the shape vector by using SVD decomposition techniques. Using these
techniques, the difference between the initial and the current pose is computed.
It is worth noting that this is not an incremental method and, consequently, it
does not suffer from the typical accumulative bias produced by signal integration
in odometry and inertial-based navigation systems.

Finally, by fusing the information provided by the several contours available
in the image, the 3D robot pose is obtained. Rotations are absolute values,
whereas translations are recovered up to the scaled depth. Inertial measure-
ments are useful also here to solve some ambiguities in the result arising from
the use of a monocular vision system.

The paper is structured as follows. The next section explains how to obtain
3D information from tracked active contours. Section 3 gives the main ideas
to understand the tracking of one contour and how inertial data is combined
with contour tracking, and the next section makes some considerations to be
taken into account in the redesign of the tracking algorithms to allow for the
simultaneous tracking of several active contours. Section 5 describes how inertial
information helps to solve some ambiguities of the recovered pose. The results
of two experiments are presented in Section 6 and, finally, some conclusions and
the envisaged future work are discussed in Section 7.



2 Obtaining 3D pose from the deformation of
contours

Under weak-perspective conditions, the rigid motion of a 3D contour D(s) rel-
ative to a reference contour Dg(s),

D(s) = RDo(s) + T,

projects on the camera as an affine deformation of the projection of the reference
contour, namely the template, that can be expressed as:

d(s) —do(s) = (M — I)do(s)

where I is the identity matrix,
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R;; are the elements of the 3D rotation matrix R, T; are the elements of the
translation vector T and Z; is the distance from the template Dg(s) to the
camera.

Using the Euler notation to represent the rotation matrix,

R = R.(¢)Rx(0)Rx(¢)), 3)

equation (1) can be rewritten as
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This last equation shows that 6 can be computed from the ratio of eigenvalues
of MMT, namely (A1, \2),
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where A\ is the largest eigenvalue and As the smallest one. The angle ¢ can
be extracted from the eigenvectors of MM?. The eigenvector vy with largest
eigenvalue equals the first column of R, |2(¢),
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Isolating R, |2(¢) from equation (4),

.. (1 0
Ral2(v) = (Rs3 + —-) 1 | Rzl2(=¢)M,
ZO 0 cosf
and observing, from equation (5), that
T. 1

Ryz+ - = ——
33 ZO )\1 )
we can find siny and then .
Once the angles 1,0, ¢ are known, the rotation matrix R can be computed
as in equation (3).
The scaled translation along Z can be computed as
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The rest of the components of the 3D translation vector can be computed from
t and R using equation (2),
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3 Using inertial information in tracking

The objective of tracking is to follow an object contour along a sequence of
images. Due to its representation as a b-spline, the contour is divided naturally
into sections, each one between two consecutive nodes. For the tracking, some
interest points are defined along each contour section. Passing through each
point and normal to the contour, a line segment is defined as shown in Figure 1.
The search for edge elements (called “edgels”) is performed only for the pixels
under these normal segments, and the result is the Kalman measurement step.
This allows the system to be quick, since only local image processing is carried
out, avoiding the use of high-cost image segmentation algorithms.

Once edge elements along all search segments are located, the Kalman filter
fuses this measured contour with that predicted from previous history, so that
the resulting shape vector is always an affine deformation of the initial contour.

The length of the search segments is determined by the covariance estimated
in the preceding frame by the Kalman filter. This is done by projecting the
covariance matrix into the line normal to the contour at the given point. If
tracking is finding good affine transformations that explain changes in the image,
the covariance decreases and the search segments shrank. On the one hand, this
is a good strategy as features are searched more locally and noise in image affects
less the system. But, on the other hand, this solution is not the best for tracking
large changes in image projection.

Large changes in image position can be produced by quick movements of
the camera. As mentioned above, a weak-perspective model is used for camera
modeling. To fit the model, the camera field-of-view has to be narrow. In such



a situation, distant objects may produce important changes in the image also
in the case of small movements of the camera.

For each search segment normal to the contour, the scale factor is computed
as

E = /N7 (HPH”)N (10)

where N are the normal line coordinates, H is the measurement vector and P
is the 6 x 6 top corner of the covariance matrix. Detailed information can be
found in [5].

Note that, as covariance is changing at every frame, the search scale has to
be recalculated also for each frame. It is also worth noting that this technique
produces different search ranges depending on the orientation of the normal,
taking into account the directional estimation of covariance of the Kalman filter.

In what follows, we explain how inertial information is used to adapt the
search ranges locally on the contour by taking into account the measured dy-
namics. Consider a 3 d.o.f. inertial sensor providing coordinates (x,y,d). To
avoid having to perform a coordinate transformation between the sensor and
the camera, the sensor is placed below the camera with their reference frames
aligned. In this way, the x and y coordinates of the inertial sensor map to the z
and x camera coordinates, respectively, and rotations take place about the same
axis. Sensed movement can be expressed then as a translation
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and a rotation
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Using equations (1, 2) with equations (11, 12) sensed data can be expressed
in shape vector space as
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As the objective is to scale covariance, denominators can be eliminated in
equations (13 - 15). These equations can be rewritten in shape vector form as
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For small rotational velocities, sinw, can be approximated by w, and, thus,
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The inertial sensor gives the x direction data in the range [Vzmin-Vemaz]- TO
simplify the notation, let us consider a symmetric sensor, i.e., Vamin = Vemaz-
Sensor readings can be rescaled to provide values in the range [Upmin--Uzmaz)-
A value v, provided by the inertial sensor can be rescaled using

Vrmax

Through the same reasoning, shape vector parameters can be rescaled. For

the first component we have

timaz = ZOwymam + Vzmaz (18)

and the expression
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tlmaa:

Inertial information can be added now by scaling the current covariance
sub-matrix by a matrix representing the scaled inertial data as follows

E = \/ NT (HVPVTHT) N (20)

where V is the scaled measurement matrix for the inertial sensing system defined
as
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For testing purposes, the minimum and maximum values of all components
have been set to 1 and 2, respectively.

4 From one to n trackers

Tracking of one contour provides, in principle, enough information to obtain
an estimate of the change in robot pose from the initial frame. Although the
tracking algorithm is designed to be robust to some kinds of partial occlusions,



there are some situations where the tracker gets necessarily lost and fails to re-
cover the true 3D pose. For example, under an automatic initialization scheme,
a contour may be fitted to a moving object. In this case, the estimate would not
be the robot movement, but the relative motion between the moving object and
the vehicle (note that, if the camera is known not to be moving, then the object
movement is recovered). An active contour can also be initialized to fit a very
close object, or a robot trajectory may take objects closer to the camera. In
such situations, perspective effects appear. Affine transformations are then not
enough to encode the deformations of the contours in the image and errors in
the recovered pose become larger. Moreover, due to the camera model adopted,
the difference in depth of the points that form the contour must be small, as
the contour is taken to be a planar one. Effects of apparent contours [7] in the
image may produce large errors in estimates.

By tracking simultaneously more than one contour in the image, several
pose estimates are obtained. It is expected that, by fusing all these estimates,
improvements in both pose estimation and tracking robustness will be obtained.

Since all contours deform as a result of the same camera motion, one could
easily think of sharing the same Kalman filter state between all contours. How-
ever, the shape vector of each contour depends on the distance from the contour
to the camera, which may be different for each contour. Moreover, taking into
account the differences in initialization, as well as the disruptive phenomena
explained above, it turns out that this is not a good option. Trackers should
be as independent as possible to provide separate estimates, most of which will
hopefully be free of the disruptions in image projection mentioned above. In
this way, outliers could be spotted and a reliable estimate could be derived by
fusing the estimates from the remaining trackers.

Following this idea, the software design is shown in Figure 2.

5 Estimating 3D pose

From each tracker a shape vector and its covariance is obtained. The system
pose estimation is computed using all the individual estimations.

Section 2 has defined a method to translate tracked data from shape vector
space into motion parameters in 3D space. One option to combine all these
informations is to use statistical methods. Statistical fusion [8] is proposed as a
first approach.

Assuming no outliers among the tracked contours, all the estimates can be
combined to obtain a better estimation of the pose. We propose to use the trace
of the covariance matrix as an approximation of the variance of each pose. An
individual estimation of pose is obtained from each contour at frame rate.

For simplicity we analyze the case of two estimations. For each degree of
freedom (T,T,,T.,®,0,1), the new estimated value, for example Ty, is based
on estimations 71, and T2, from two different trackers, and can be computed
using:
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It is easy to prove that not all translations and rotations will be sensed with
the same resolution. Translations parallel to the image plane are better sensed
as they produce greater changes in image than translations normal to the image
plane. The same reason explains that rotations about an axis perpendicular
to the image plane are better sensed than the ones about axes parallel to the
image plane. This can be seen in Figure 3, where a static camera tracks a moving
contour. In this experiment a synthetic image is used in order to avoid measuring
noise from the acquisition system. As predicted, in translation (Figure 3(a))
depth is worst estimated, yielding greater variance. In rotational recovered
parameters (Figure 3(b)), Z varies less than X and Y.

Using monocular vision one can observe that different real 3D movements
result in the same, or very similar, projections on the image plane. This is due
to both finite resolution and the well-known projection ambiguities.

One of these ambiguities is the so called Necker reversal ambiguity. It is
explained in Figure 4. Take a point rotating a certain angle about a point in a
plane parallel to the image plane. Its projection in the image will be very similar
to that of another point, in mirror position from the parallel plane, rotating the
same angle but in the opposite direction.

When projection effects are big, the sign of the angle is easy to recover.
When these effects diminish, as it is the case of this work, the direction becomes
undetermined. This can be determined using an inertial sensor, as it provides
the sign of the movement.

Other ambiguities should be solved, or at least limited using inertial data.
However, it requires more precise and robust data from the inertial sensors,
which we have not available at the moment.

6 Experiments and results

6.1 Pose estimation with 2 tracked contours

To evaluate the performance of the tracker information fusion, synthetic images
are used. In this way, errors produced by the tracking system can be easily
isolated and the fusion performance can be better evaluated.

A sequence of 100 frames is used simulating a camera rotating about the Z
axis. Fach successive frame is rotated by 1 degree, thus the total rotation is 100
degrees.

Different initializations are used for each contour. As can be seen in Figure 5,
the number of control points used to define the right contour is twice the number
used for the left one.

Recovered rotations for both contours are shown in Figure 6. As rotation
in ZXZ Euler representation is not intuitive, angles are expressed in XYZ form.
Rotation about the Z axis is quite well recovered through the sequence of frames.
In the case of rotations about the X and Y axes, just noise is recovered as the
camera does not move along these directions.

Effects of different initializations can be seen in Table 1. As more points are
used to model the right contour, the standard deviation decreases and becomes
lower than in the left contour.

As tracking performance improves, the computed covariance also improves,
providing a lower mean value of covariance and a lower standard deviation. This



can be seen in Table 2, meaning that tracking with more points is more stable.

Using statistical fusion, both estimates can be combined to obtain a better
estimate. Results of fusion are shown in Figure 7. As can be seen, values for
rotation follow real motion. Noise from single estimations is more stable, and
covariance is also stable as the figure is taken at a very high zooming rate. This
is important, because it shows that covariance can be used as a quality factor
for single pose recovery from the tracking algorithm.

6.2 Improved tracking with inertial information

For this work we use a RobuCab Mobile Robot [9]. It can be used in two modes:
car-like navigation and bi-directional driving. As can be seen in Figure 8, it is
a relatively big mobile vehicle with capacity for up to four people.

For simplicity of the control system, the car-like driving option is used,
but better results should be obtained under bi-direction driving mode as the
maximum turning angle would increase. In this vehicle we mount a monocular
vision system with the described 6 d.o.f. tracking system. A Gyrostar inertial
sensor, from Murata, is used to measure rotations about the Y axis. To measure
X and Z linear accelerations, an ADXL dual accelerometer from Analog Devices
is used. All these sensors are connected to a dedicated board with an AVR
processor used to make A/D conversions, PWM decoding and time integration.
It has also a thermometer for thermal data correction. This ’intelligent’ sensor
provides not only changes in velocity, but also mean velocity and position. Drift,
typical in this kind of computations, is reset periodically with the information
obtained by fusion of the other sensors. This board shares memory with a
MPC555 board, which is connected through a CAN bus to the control and vision
processing PC. All the system runs under a real-time Linux kernel in a Pentium
233 MHz industrial box. A novel approach to distributed programming [10]
has been used to program robot control as well as for the intercommunication
of control and vision processes, taking advantage of the real time operating
system. Figure 9 shows the hardware components and their interconnections.

The shape vector we use models all plane deformations resulting from 3D
motions. It could be changed in this experiment in order to model only 3 d.o.f.
movements [6]. However, as the robot real movements are in 6 parameter space,
mainly due to floor rugosity and vehicle dampers, the whole shape vector is
used.

In this experiment the robot is in autonomous driving mode, following a
filoguided path. In this way, the trajectory can be easily repeated, thus allow-
ing us to perform several experiments with very similar conditions. The path
followed consists of a straight line segment, a curve and another straight line.

To use inertial data within the visual tracker, we need to compute the vector
S in equation (16). For this, it is necessary to have an estimation of Zj, i.e.,
the initial distance of the target to the sensor set. In this experiment, this
value has been set by the operator, but in future work we expect to derive it
automatically by relating the difference in distance measured by the inertial
sensor to the scaled target depth obtained by the vision process.

First, the algorithm without inertial information is used. On the first straight
segment, the contour is well followed, but as can be seen in Figure 10(a), when
turning takes place and the contour moves quicker in the image plane, it loses
the real object and the covariance increases.



Second, the algorithm adding inertial information to the tracker is used.
In this experiment, tracking does not lose the target and finishes the sequence
giving good recovered pose values. As can be seen in the covariance representa-
tion in Figure 10(b), covariance increases at the beginning of the turning, but
decreases quickly, showing that tracking has fixed the target despite its quick
translation across the image.

As can be easily seen, if we use more images trying to track the target
while moving towards it, the contour leaves the image range. Another contour
should be initialized in order to be able to continue egomotion recovery in such
situation.

7 Conclusions

This article presents a novel approach to enrich visual tracking of active contours
with information provided by inertial sensors. First, the tracking strategy has
been modified to include inertial data. In this way, contour search in the new
frame by taking into account its position in the preceding frame is made more
robust, thus allowing tracking at higher velocities of the video data.

The paper also presents a framework to extend the method to be able to
use multiple contours and shows the way to estimate the 3D pose from several
tracked contours. A preliminary approach to fuse several estimations has been
presented. Taking advantage of the inertial sensing of the rotation sign, the
Necker reversal ambiguity has been solved.

Initial experiments have been performed to prove correctness in some re-
duced situations. Further work should include the change of the fusion strategy
to take into account directional information in the covariance matrix.

Improvements in the quality of the data obtained from inertial sensors will
allow to reduce, or eliminate, some other ambiguities in the pose recovery al-
gorithm. Moreover, by relating distance differences measured by the inertial
sensor to scaled depths obtained by the vision system, a reasonable approxima-
tion of the Zy parameter should be provided automatically. Experiments using
whole information provided by the inertial sensor set should be also performed.
As pose recovery is up to 6 dof, experiments with complete 3D movements will
be useful to test the feasibility of ego-motion recovery algorithms. To easily
show algorithm performance next experiments should include ground truth.
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Figure 1: An image with a contour and its search segments highlighted.
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Figure 5: Different initializations used in the experiment.
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Figure 8: Mobile robot used in the experiment.
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Left Rz Ry

Mean : —0.0684203 0.0397576
Std —dev :  0.1296382  0.1086573
Right

Mean : —0.0434605 0.0356667

Std — dev:  0.0676008  0.0679300

Table 1: Statistics for recovered XYZ rotation.
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Left Right
Mean : 20.917314 10.782572
Std — dev :  0.0001930 0.0000838

Table 2: Statistics for covariance
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