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Abstract

The main drawback of using neural networks or other example-based learning procedures to ap-

proximate the inverse kinematics (IK) of robot arms is the high number of training samples (i.e., robot

movements) required to attain an acceptable precision. We propose here a trick, valid for most industrial

robots, that greatly reduces the number of movements needed to learn or relearn the IK to a given

accuracy. This trick consists in expressing the IK as a composition of learnable functions, each having

half the dimensionality of the original mapping. Off-line and on-line training schemes to learn these

component functions are also proposed. Experimental results obtained by using Nearest Neighbours

and PSOMs, with and without the decomposition, show that the time savings granted by the proposed

scheme grow polynomially with the precision required.
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I. I NTRODUCTION

A robot manipulator is a multifunctional and reprogrammable articulated mechanism able to

move in a given workspace. It usually consists of several bodies linked by joints, and it is

commanded by providing values to some of these joints. Thus, when moving, the robot can be

thought of as realizing a mapping from joint space to workspace coordinates, which is referred

to as theforward kinematics mapping. Robot programming, however, is most easily carried out

in terms of the cartesian coordinates of the workspace, leaving to the controller the task of

translating such specification into joint variables. Thus, robot control critically depends on the

so-calledinverse kinematics mapping(IKM), i.e. that providing joint coordinates as a function

of the desired position and orientation of the robot end-effector in the workspace.

Their range of application would widen if robots were made adaptive not only to environmental

variations, but also to changes in their own geometry. Since these geometric changes affect the

IKM, a way of learning (or tuning) this mapping automatically while robots move is highly

desirable. Recently, the development of humanoid robots has further raised the interest in this

problem [1]. An overview of the approaches proposed to learn the IKM is provided in [9].

Such learning is especially useful for robots that have uncertainties difficult to model, as,

for example, robots with flexible links. It is also interesting when the IKM is difficult or

slow to compute, as in the case of redundant robots. Moreover, rigid non-redundant robots

also benefit from such learning, since this permits their on-line recalibration during normal

functioning. In particular, high-precision robots may need to be recalibrated often, which makes
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some applications impractical or impossible without such learning capability. Furthermore, in

space stations or dangerous zones, a human could not be available when a recalibration is needed.

Thus, on-line learning of the IKM may be very helpful in these cases.

However, it has some drawbacks, as the requirement of a sophisticated set-up, with sensors

able to determine the position and orientation of the end-effector. This set-up makes the system

more expensive, but may also be useful for other purposes. A more serious drawback is the high

number of samples often required to approximate the mapping up to the desired accuracy. This

paper proposes a solution to this second drawback.

Typically, neural network applications have many input variables, some of which are redundant,

and others have a negligible effect on the output variables. Thus, the underlying mapping can

be considered as lying on a low-dimensional manifold. The hard part of the learning task is to

guess the structure of the mapping from the tangle of information. The difficulty lies here, rather

than in the fine approximation of every detail, since the mappings are often fairly simple.

Instead, in the learning of the IKM, one has completely independent input variables, each of

them powerfully influencing the result. Under these conditions, the number of points required

to approximate the mapping tends to be exponential in the number of variables. Moreover, in

contrast with other applications, the mapping has a complex shape and should be approximated

with a high accuracy. Thus, the number of learning points required may be huge [3], [4].

Several attempts have been made at reducing the number of required samples, among them

the use of hierarchical networks [5], [11], the learning of only the deviations from the nominal

kinematics [6], and the use of a continuous representation by associating a basis function to

each node [10].

In this paper, we propose a practical trick that can be used in combination with all the methods

April 27, 2005 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS 4

above. It consists in decomposing the learning of the IKM into several independent and much

simpler learning tasks. This is done at the expense of sacrificing generality: the procedure works

only for some robot models subject to certain types of deformations. Specifically, the procedure

assumes that the last three robot joints cross at a point. This is fulfilled by the most popular

commercial robot arms, such as the PUMA or the Stanford robot. The condition continues to hold

after any encoder miscalibration and the other most likely deformations of the robot geometry.

The gain obtained is worth the sacrifice. The input dimensionality of each of the tasks resulting

from the decomposition is half that of the original one. Thus, for a given desired accuracy,

if the number of training samples required to learn the IKM directly isO(nd), through the

decomposition it reduces toO(nd/2). This yields an enormous reduction in the number of samples

required for high-precision applications.

The paper is structured as follows. In the next section we describe the proposed decomposition

of the IKM. Section 3 presents the training scheme needed to learn the component functions. In

Section 4, both a nearest-neighbour algorithm and a parameterized self-organizing map (PSOM)

are used to learn the IKM, both directly and through the decomposition, permitting to quantify

the savings obtained in relation to the precision required. Finally, some conclusions are drawn

in Section 5.

II. D ECOMPOSING THE INVERSE KINEMATICS MAPPING

As mentioned in the preceding section, the number of samples required to learn the IKM grows

exponentially with the number of input variables. To keep this growth within reasonable bounds,

we propose to decompose the IKM in such a way that each component function depends on only

half of the input variables. Since the input, in this case, is naturally divided into position and

orientation, every component function should depend on either the desired position or orientation
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alone. The most interesting case of robot with six rotational joints for which such decomposition

is possible is that in which the axes of the three last joints cross at a point. We will formulate

the decomposition for this case, the most common one, although it can be applied to other types

of robots as well.

A. Overview of the proposed approach

In order to make the formal derivation of our approach more understandable, we first provide

the reader with an intuitive view of what we are aiming at. Figure 1 shows the involved

variables and mappings particularized for the widely-known PUMA robot.θ = (θ1, θ2, θ3) and

ν = (ν1, ν2, ν3) are the values of the first three and the last three joint angles, respectively.X and

Ω are the desired position and orientation of the end-effector. Then, the full IKM maps(X, Ω)

into (θ, ν). Our proposed decomposition consists of two mappings (labelled ”translation” and

”rotation” in the figure) yieldingθ and ν, whose inputs areX and Ω, respectively, combined

with apropriate offset functions. The meaning of the offsets will become clear in what follows.

Here we just like to point out that, in this case, the two inverse mappings and the two offsets

are 3D functions, while the full IKM is a 6D function.

In what follows, we begin by explaining whyθ can be easily obtained under the above

assumption, and then we show howν can be calculated as a composition of functions dependent

on θ.

B. Calculus ofθ

Let X andΩ be the position and orientation of the end-effector. Our purpose is to expressθ

as a composition of functions dependent on part of the given data(X, Ω), so that the component

functions needing to be learned depend only on eitherX or Ω.
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Fig. 1. The photograph shows a PUMA robot with the variablesθ = (θ1, θ2, θ3) andν = (ν1, ν2, ν3) for the first three and

the last three joint angles, respectively, superimposed.X andΩ are the desired position and orientation of the end-effector. On

top, the original, full 6-to-6 inverse kinematic mapping, is specified; and below on the right, the proposed decomposition of the

mapping is sketched. Its two components are 3-to-3 inverse mappings, depending on only translation and rotation, respectively,

plus off-sets as described in the text.

The positionX∗ of the point at which the last three axes cross can be recovered fromX and

Ω as follows:

X∗ = X −∆X(Ω), (1)

where∆X(.) is a well-defined function, which for each end-effector orientation provides the

relative position ofX with respect toX∗. Note thatX∗ is not moved by varyingν, and thus it

depends only onθ. This ∆X(.) function is the translation offset mentioned in Fig. 1.

Thus, τ : X∗ → θ is a partial inverse kinematics mapping (the translation component
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mentioned in Fig. 1) with reduced dimensionality with respect to the original problem. It may

be multivalued for unrestricted workspaces, and it can be learned with known methods. Since

X∗ is not directly available, it must be previously calculated:

θ = τ(X∗) = τ(X −∆X(Ω)). (2)

The correctness ofX∗ guarantees the correctness ofX conditioned on the correctness ofΩ.

Therefore, we shall guarantee the correctness ofΩ by using the remaining degrees of freedom,

ν, as shown below.

C. Calculus ofν

To calculateν, we consider a simplified version of the inverse kinematics mapping by freezing

θ in a reference configuration. In this way,Ω only depends onν, thus makingΩ → ν a

learnable inverse kinematics mapping, namely the rotation component in Fig. 1. We need to

model the relation betweenΩ1 in an arbitraryθ1 configuration with the orientation in a reference

configurationθ0, which will provide us with the rotation offset mentioned in Fig. 1. Let us write

this down formally. To simplify the exposition, we assume thatΩ is represented as a rotation

matrix.

First we define a fixed configuration of the first three joints,θ0, to be used as reference. Then,

we define a new functionΩ0(·) such thatΩ0(θ) is the rotation that transforms the orientation of

the end-effector at a configuration(θ, ν) to the orientation it would have at(θ0, ν):

Ω0(θ) Ω(θ, ν) = Ω(θ0, ν). (3)

Figure 2 illustrates this function. Note thatΩ0(.) is independent ofν and the only requirement

is that the last links and joints inν are not flexible.
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W

W (q) W
0

q

q  : Reference
position

0

Fig. 2. Illustration of the rotation offset functionΩ0(θ). When the robot moves the first three joints fromθ (left) to θ0 (right)

while maintaining the last three joints fixed, the gripper undergoes a rotation ofΩ0(θ) going fromΩ (left) to Ω0(θ)Ω (right).

We shall now define the functionφ0(.) such thatφ0(Ω) is theν value which atθ0 yields the

orientationΩ.

We can applyφ0(·) to both members of the equality (3), leading to:

φ0(Ω0(θ) Ω(θ, ν)) = φ0(Ω(θ0, ν)),

and thus,

φ0(Ω0(θ) Ω) = ν. (4)

φ0(·) is a 3-to-3 inverse mapping, which constitutes the rotation component mentioned in Fig.

1.
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D. The target decomposition

Table I summarizes the four functions involved in the decomposition. Supposing we are able

to learnτ(.), ∆X(.), φ0(.) and Ω0(.), the inverse kinematics can be calculated in two phases.

First we obtainθ following equation 2, and then we calculateν according to equation 4. The

first diagram in the appendix illustrates this two-phase process.

We have obtained expressions forθ and ν as a composition of functions, each having as

domain a part of the input,X or Ω. Thus, their learning can be expected to require a number

of samples orders of magnitude lower than that needed to learn the whole IKM directly.

Function Description

τ : X∗ → θ Inverse kinematics (only position)of the cross-point, the point where the last three axes cross

∆X : Ω → T Offset for τ : Translation of the gripper positionX returning the cross-point positionX∗

φ0 : Ω → ν Inverse kinematics (only orientation) of the gripper whenθ is fixed toθ0

Ω0 : θ → R Offset for φ0: Rotation undergone by the gripper whenθ changes whileν remains fixed

TABLE I

THE FOUR FUNCTIONS INVOLVED IN THE DECOMPOSITION OF THE INVERSE KINEMATICS LEARNING.

III. L EARNING

The function ∆X(.) is a special case because of its simplicity, and will be considered

separately from the other three functions. If, through external sensors, the set-up permits acquiring

the positionX∗ at which the last three axes cross, then this function is not even needed: it suffices

to consider(X∗, Ω) directly as input. If, on the contrary,X∗ needs to be derived from(X, Ω),

then a simple procedure entailing only the motion of the last two joints can be applied. One
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can observe the position and orientation of the end-effector and then make a step, e.g. inν3,

whilst maintaining the remaining joints fixed, and again observe the position and orientation.

From these two observations the axis ofν3 can be deduced uniquely. Making a step inν2 and

another observation, the axis ofν2 can be deduced. Finally, as neither the observations can be

expected to be accurate, nor the actual axes may really cross at a point, the middle point of the

segment realizing the minimum distance between the two axes is taken as an estimation of the

crossing pointX∗. Thus, the total number of observations required to deriveX∗ from X is three

(which can be integrated in the learning ofφ0, as described below), and neither in this case, nor

in the previous one, iterative learning is required for the encoding of∆X.

The remaining functionsτ(.), Ω0(.) and φ0(.) are inverse functions, in the sense that we

cannot generate the output for a given input. Their learning can be accomplished with strategies

entailing different degrees of parallelism and sophistication, as shown next.

To help visualize the data flow for the different learning strategies, flow diagrams for each of

them are included in the appendix.

A. Independent learning

The simplest approach is to learn each function independently in a phase preceding the

functional operation of the robot. Algorithms to provide inputs and outputs forτ(.), Ω0(.) and

φ0(.) to a learning system are sketched below.

Learning of τ

Repeat fori = 1 to whatever

Selectθi)

Chooseνi) arbitrarily
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Move to (θi), νi)). ObserveX i), Ωi)

Learn withX i) −∆X(Ωi)) as input andθi) as output

Learning of Ω0

Selectν ′ arbitrarily

Move to (θ0, ν
′). ObserveΩ0)

Repeat fori = 1 to whatever

Selectθi)

Move to (θi), ν ′). ObserveΩi)

Learn withθi) as input andΩ0)(Ωi))T as output

Learning of φ0

Repeat fori = 1 to whatever

Selectνi)

Move to (θ0, ν
i)). ObserveΩi)

Learn withΩi) as input andνi) as output

B. Partially overlapped learning

There are alternatives more efficient than the independent learning of all functions. We first

suggest the parallelization of the encoding of∆X (if X∗ cannot be directly acquired by means

of external sensors) andφ0 in one phase, and that ofτ ∗ andΩ0 in another phase.

For the first parallelization, it is enough that two of the movements carried out in the course

of φ0 learning change consecutivelyν2 andν3 alone.

April 27, 2005 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS 12

The second phase is carried out with the following algorithm:

Learning of Ω0 and τ

Selectν ′ arbitrarily

Move to (θ0, ν
′). ObserveΩ0)

Repeat fori = 1 to whatever

Selectθi)

Move to (θi), ν ′). Observe (X i), Ωi))

LearnΩ0 with θi) as input andΩ0)(Ωi))T as output

Learnτ with X i) −∆X(Ωi)) as input andθi) as output

C. Fully overlapped (on-line) learning

None of the above learning strategies can be used to perform on-line learning, i.e., learning

that is integrated in normal working operation. The strategy that we present now parallelizes

the learning of all the functions used in our procedure to calculate the IKM. And, interestingly,

it permits carrying out arbitrary movements, as for example those required by an application,

while at the same time refining the estimation of the IKM of the robot.

To get these advantages we need access to the inverseφ−1
0 (ν), which gives the orientation

that the argumentν produces whenθ = θ0. Fortunately, being the inverse ofφ0, it can be

learned from its same input-output samples. In some types of systems [10], even, the learning

of a function automatically makes available a proper estimation of its inverse and, therefore, a

separate estimator forφ−1
0 (ν) would not be required. This is the algorithm:

Learning of Ω0, τ , φ0 and φ−1
0

Repeat fori = 1 to whatever
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Select(θi), νi))

Move to (θi), νi)). Observe (X i), Ωi))

LearnΩ0 with θi) as input andφ−1
0 (νi)) (Ωi))T as output

Learnτ with X i) −∆X(Ωi)) as input andθi) as output

Learnφ0 with Ω0(θ
i)) Ωi) as input andνi) as output

Learnφ−1
0 with νi) as input andΩ0(θ

i))Ωi) as output

When this algorithm is integrated in the normal operation of the robot,θi) and νi) are

the configurations where the robot is moved to, instead of being generated randomly. In this

algorithm, τ is learned without any help of the other functions. On the contrary, the learning

of φ0 (and its inverse) is supported byΩ0 and, reciprocally,φ0 is needed to learnΩ0. Three

entities should be clearly distinguished: 1) the actual functionsΩ0, φ0 andφ−1
0 resulting from the

robot geometry, 2) the estimations of these functions, and 3) the data generated to estimate the

functions. There is a positive feedback betweenΩ0 andφ0: when the estimator ofΩ0 ameliorates,

the data provided to learnφ0 is more exact, as well asφ0 itself, which redounds to the accuracy

of the data forΩ0.

But feedback can also be negative. Imagine for example that our learning system has arrived

to the desired accuracy in the calculus of the IKM and a serious and sudden damage happens,

affecting only the last elements of the robot.Ω0 will remain accurate, butφ0 (and its inverse)

will not. In this mode of learning, the inaccuracy ofΩ0 will lead to erroneous data forφ0 (and

its inverse), which will worsen its estimation. Thus, after a sudden and important damage, it

could be wise to check whetherΩ0 is accurate and, if it is so, suppress the step where it is

learned. It is important to note that in the case of damage to the first links, not onlyτ andΩ0
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will be affected, but usually alsoφ0 (and its inverse), since the referenceθ0 will not produce in

general the same orientation with any givenν as before damage. Therefore, any checking ofφ0

(or its inverse) alone is useless.

In a certain sense,Ω0 andφ0 are learned exclusively from one another: the error in the training

data forΩ0 is exactly the approximation error forφ−1
0 , and the error in the training data forφ−1

0

is exactly the approximation error forΩ0. So, how can the learning of these functions progress?

It suffices to have a starting point in the form of a known point for one of the functions. Such a

point to initiate positive feedback is always available forΩ0: (θ0, 0R), where0R stands for the

null rotation representation. For memory-based systems it is enough to provide it as a first point

and keep it unaltered if necessary. For systems requiring repeated presentations of the training

patterns, a periodical remind is convenient.

IV. EXPERIMENTAL RESULTS

We have used the PUMA robot as a testbed to validate our procedure in a controlled set-

ting. Three learning systems have been tested with our decomposition approach, namely back-

propagation networks, the nearest neighbor algorithm, and local parametrized self-organizing

maps (PSOM) [10]. We present results with the last two ones, since comparisons with the former

are more prone to subjectivity due to variable factors, such as architecture, learning algorithm

and degree of training, which cannot be optimized with the same values for the two experiments

that need to be conducted to compare results.

A. Results using the nearest-neighbour algorithm

The workspace used was generated by allowing a range of 30 degrees in each of the six joints.
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For the control experiment (labeled ”standard”) we simply generate random movements of the

robot in the range above and observe the resulting positions and orientations. These and their

associated joint configurations are added to the training set after appropriate normalization. When

the nearest-neighbour algorithm is queried with a desired position and orientation, it searches the

closest position-orientation vector stored and returns as output the corresponding joint values.

In the other experiment, we test our partially overlapping procedure: the robot is moved with

a randomν to get a point forφ0, and again with randomθ to get points forτ andΩ0 in each

iteration. The learners for the three functions are nearest-neighbour algorithms analogous to the

one used in the first experiment.

Orientations and rotations are represented with five elements (last column and last row) of the

corresponding rotation matrix that determine it univocally except in gimbal lock situations.

Figures 3 and 4 show the total number of movements required to get different precision levels.

Units are millimetres for position and radians for orientation. Standard deviations are below the

resolution level of the graphic and, thus, are not shown. The precision was evaluated by querying

for 200 random position-orientation configurations inside the workspace. It is interesting to detail

some of the data used to build the graphic: while the standard procedure needed 280 movements

to attain a precision of 50 mm and 440 movements to attain a precision of .1 radians, the

partially overlapping procedure only needed 40 and 90 movements, respectively, to obtain the

same precisions. Moreover, higher precisions enlarge the differences: the standard procedure

required 45000 and 35000 movements to get precisions of 20 mm and .4 radians respectively,

whereas the partially overlapping procedure only needed 400 and 1100 movements respectively.

To reveal more clearly the benefit of the partially overlapping procedure with increasing

precisions, we have displayed in Figures 5 and 6 the ratios between the number of movements
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Fig. 3. Number of movements required to obtain different levels of position precision using the nearest neighbour algorithm.

required by the standard and the partially overlapping procedures. A polynomical scaling of this

ratio with the precision required is appreciable both for position and orientation.

B. Results using Local PSOM’s

A Parametrized Self-Organized Map (PSOM) [10] approximates a function using a regular grid

of sampled points, the nodes of the network. Because of its excellent interpolation capabilities,

the required number of points is very small. Of particular interest to us is that PSOMs treat

input and output variables in the same way. This means that it is as natural to ask which output
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Fig. 4. Number of movements required to obtain different levels of orientation precision using the nearest neighbour algorithm.

corresponds to a given input as asking which input correspond to a given output. Therefore, a

search in the input variables is naturally addressed and embedded in the framework of these

networks, allowing to manage inverse-multivalued functions without problems.

When using PSOMs to learn the kinematics of the virtual robots, the movements are generated

following a regular grid in the space of joint angles covering the workspace. Then we move the

robot to the different configurations represented in the grid to obtain the associated positions

and orientations. Thus, each node in the grid requires one movement. Once trained, a PSOM

works by putting some constraints on a subset of the variables of the system (input or output),
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Fig. 5. Ratio between the two curves displayed in Figure 3.

for example fixing them to a desired value. The system then carries out a quick optimization

aimed at finding a point of the approximated input-output manifold satisfying the constraints or,

if impossible, the closest one to satisfying them. The starting point of the process is the stored

point (node) that best satisfies the constraints. From it, an iterative minimization procedure is

launched, which finishes in a few steps. For PSOMs trained on the kinematics of a robot, to

get the inverse kinematics we simply fix the position and orientation variables, and we let the

minimization get the point in the interpolating surface with the desired pose values, then the

remaining components of the point are taken to be the result. This is the control (”standard”)

experiment.

In the experiment to test our decomposition approach, a PSOM is created for each of the

functions to be learned: we generate a grid forθ and move the first three robot joints to traverse

each of its points in order to get simultaneously points forτ andΩ0. In the same way, a grid for

ν is generated and movements are carried out accordingly to get points forφ0. This corresponds
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to the partially overlapping learning procedure of Section III.B. In the operation phase, to get

for example the value ofφ0, we simply fix the orientation values of the corresponding PSOM.

In the experiments presented in this section we used a PSOM variant known as LPSOM [10].

The “L” stands for “Local”, because this model builds a PSOM by extracting for each query a

subgrid of the sampling grid, which is centered on the closest point to the query. This subgrid

has a size of 4 points per axis in our tests.

For the bunch of experiments carried out with PSOMs, the workspace for the PUMA robot

has been considerably enlarged. The ranges allowed for the six joints [2] in these experiments

are as follows:[−150,−10], [−215,−100], [−35, 80], [−110, 170], [−100, 100], [−100, 100].

Orientations and rotations are represented as before with five elements of the corresponding

rotation matrix.

Tables II and III show the precisions attained with an increasing number of movements. Note

that since the movements in Table II correspond to PSOM grids of dimension 6, while those
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in Table III are obtained with two grids of dimension 3, it was not possible to have the same

number of movements in both tables (n6 in the former, versus2n3 in the latter). The precision was

evaluated by querying for 400 random position-orientation configurations inside the workspace.

The tables only cover numbers of movements that seem reasonable. It was impossible with our

computer memory resources (allowing grids of up to 262,144 points) to reach precisions under

1 mm and .01 radians with the standard procedure, whereas the decomposition procedure only

needed 686 and 1024 movements to get these precisions, respectively.

A final and important remark is that the time to obtain good precisions was also orders of

magnitude faster with the decomposition approach. This is due to lower searching times to get

the closer node in the grids and to lower complexity in the optimizations performed in the

PSOMs.

number of position position orientation orientation

movements mean error stdev. error mean error stdev. error

64 591 234 2.145 0.655

729 195 132 0.316 0.253

4096 38 50 0.138 0.163

TABLE II

POSITION (IN MILLIMETERS ) AND ORIENTATION (IN RADIANS) PRECISIONS OBTAINED WITH DIFFERENT

NUMBERS OF MOVEMENTS USING THE STANDARD PROCEDURE.

V. CONCLUDING REMARKS AND FUTURE WORK

The purpose of this paper is to propose a procedure to learn the Inverse Kinematics (IK)

mapping with a reasonable number of movements when a high accuracy is required.
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number of position position orientation orientation

movements mean error stdev. error mean error stdev. error

54 57.7 27.2 0.420 0.255

128 9.7 6.0 0.158 0.150

250 3.0 2.7 0.068 0.134

432 1.0 0.8 0.020 0.029

686 0.6 1.0 0.015 0.032

1024 0.2 0.2 0.006 0.028

TABLE III

POSITION (IN MILLIMETERS ) AND ORIENTATION (IN RADIANS) PRECISIONS OBTAINED WITH DIFFERENT

NUMBERS OF MOVEMENTS USING THE NEW DECOMPOSITION PROCEDURE.

To this end, we assume that the axes of the last three joints cross at a point, which is a

condition fulfilled by most robot arms. This condition holds after the most likely miscalibrations

such as, for example, encoder shift. More severe physical damage affecting the first links (those

whose axes are not required to cross) is also allowed. Even the gripper or a physical element

linking the cross point to the gripper can also be deformed without violating the assumption.

One of the most promising applications of our method is the learning of IK for flexible robots.

Usually the first links are much longer and heavier than the last ones, which are used mainly to

give an appropriate orientation to the gripper. This makes the first links more prone to elastic

deformation due to lever effect. If the last links are short and robust, the cross condition is

valid for this type of robots. Since our method reduces the dimensionality of the functions to be

learned from 6 to 3, it is still affordable to include the weight changes as an extra variable and

still have quick learning (as a matter of fact, one only needs to add this variable as an input in
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the learning ofΩ0 andτ ).

In addition to learning efficiency, our method has other advantages over classic learning of

IK in some contexts. For example, in [6] we tackled IK learning for a REIS robot placed in a

Space Station mock-up, whose mission was to insert and extract cards from a rack. If, due to

launching stress or tear-and-wear, the IK mapping would strongly deviate from the nominal one,

the movements required for relearning could damage the rack (or further damage the robot). With

the procedure here proposed, it is possible to learn to move in the complete workspace without

actually moving everywhere, and only approach risk zones after learning has been succesfully

completed.

A possible way of improving orientation accuracy is to change the representation of rotations

and orientations in the learning systems. We have used five elements of the rotation matrix, which

guarantees that rotations that are close to one another have also close representations (a property

not exhibited, for example, by Euler angles and quaternions). This is not the best representation

for learning since, for example, the full rotation matrix leads to lower errors, although it is

more expensive in computation and memory and, overall, has the problem of how to map the

interpolated matrices to true rotation matrices. This representation issue is not particularly linked

to our decomposition procedure. It can be avoided in future work by calculatingν as function

of positions and translations instead of orientations and rotations.

We have to mention that a very similar decomposition procedure can be developed for robots

not fulfilling the cross-point condition, but whose first three joints are prismatic. A more involved

task is the development of a general decomposition procedure for serial manipulators with

arbitrary joints. This procedure cannot be obtained as a straightforward generalization of the

one presented in this paper, since here we have exploited the condition that the last three joint
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axes cross at a point. Some preliminary work in this direction can be found in [8].

To conclude, let us stress that our decomposition procedure places requirements on the robot

to which it is applied, but not on the learning method and, thus, it can be used in combination

with any such method based on input-output training samples.

APPENDIX

A. Operation module of the proposed decomposition approach.

Desired 

(X, !)
!(X - !X(!)) "

output

#0(!0(") !) $

output

Fig. 7. Flow-diagram of the proposed approach in operation. It shows how the inverse kinematics of the robot is calculated in

two stages.

April 27, 2005 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS 24

B. Independent learning strategy.

Select !i), "i)
Move to

(!i), "i))
X

i), !i)
Learn #

input: Xi)
 - !X(!i))

output: !i)

i= i +1

Select !i)
Move to

(!i), "')
X

i), !i)

Learn $0

input: !i)

output: !0) (!i))T

i= i +1

Select "'

Move to

(!0, "')

X
0), !0)

Select "i)
Move to

(!0,"i))
X

i), !i)
Learn %0

input:  !i)

output: "i)

i= i +1

Fig. 8. Flow-diagram for the independent learning ofΩ0(·), τ(·) andφ0(·).
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C. Partially overlapped learning strategy.

Select !i)
Move to

(!i), "')
X

i), !i)

Learn #0

input: !i)

output: !0) (!i))T

Select "'

Move to

(!0, "')

X
0), !0)

Select "i)
Move to

(!0,"i))
X

i), !i)
Learn $0

input:  !i)

output: "i)

i= i +1

Learn %

input: Xi)
 - !X(!i))

output: !i)

i= i +1

Fig. 9. Flow-diagram for the overlapped learning ofΩ0(·) andτ(·), while φ0(·) remains being learned independently.
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D. Fully overlapped learning strategy.

Move to

(!i), "i))
X

i), !i)

Learn #0

input: !i)

output: $0 ("
i)) (!i))T

Learn %

input: Xi)
 - !X(!i))

output: !i)

Learn $0

input: #0(!i)) !i)

output: "i)

Learn $0
-1

input: "i)

output: #0(!i)) !i)

i= i +1

Select !i), "i)

(See legend)

-1

Fig. 10. Flow-diagram for the fully overlapped learning ofΩ0(·), τ(·), φ0(·) andφ−1
0 (·). The selection ofθi) andνi) can be

done either directly or through theoperation module.
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Since 1996 he is with the Institut de Robòtica i Informàtica Industrial in Barcelona. His interests in neural networks include

fault tolerance, noisy and missing data processing and their application to robotics and computer vision.

Carme Torras (http://www-iri.upc.es/people/torras) is research professor at the Institut de Robòtica i
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