Publication

Robust fuzzy sliding mode control for air supply on PEM fuel cell system

Journal Article (2018)

Journal

International Journal of Modelling, Identification and Control

Pages

341-351

Volume

29

Number

4

Doc link

https://doi.org/10.1504/IJMIC.2018.092123

File

Download the digital copy of the doc pdf document

Authors

Abstract

In this paper, an adaptive fuzzy sliding mode controller is employed for air supply on proton exchange membrane fuel cell (PEMFC) systems. The control objective is to adjust the oxygen excess ratio at a given set point in order to prevent oxygen starvation and damage to the fuel-cell stack. The proposed control scheme consists of two parts: a sliding mode controller (SMC) and fuzzy logic controller (FLC) with an adjustable gain factor. The SMC is used to calculate the equivalent control law and the FLC is used to approximate the control hitting law. The performance of the proposed control strategy is analysed through simulations for different load variations. The results indicated that the adaptive fuzzy sliding mode controller (AFSMC) is excellent in terms of stability and several key performance indices such as the integral squared error (ISE), the integral absolute error (IAE) and the integral time-weighted absolute error (ITAE), as well as the settling and rise times for the closed-loop control system.

Categories

automation, control theory.

Author keywords

PEM fuel cell system; oxygen starvation; sliding mode control; fuzzy logic control; stability analysis

Scientific reference

Z. Baroud, A. Benalia and C. Ocampo-Martínez. Robust fuzzy sliding mode control for air supply on PEM fuel cell system. International Journal of Modelling, Identification and Control, 29(4): 341-351, 2018.