

Project Number: 101016906 Start Date of Project: 2021/01/01 Duration: 48 months

Type of document D1.2. – V1.0

KoM Report

Dissemination level	PUBLIC
Submission Date	2021-02-28
Work Package	WP1
Task	T1.2
Туре	Report
Version	1.0
Author	RSA
Approved by	UNIROMA3

DISCLAIMER:

The sole responsibility for the content of this deliverable rests with the authors. It does not necessarily reflect the opinion of the European Union. Neither the Directorate-General for Communications Networks, Content and Technology, Artificial Intelligence and Digital Industry nor the European Commission are responsible for any use that may be made of the information

Executive Summary

Deliverable D1.2 includes the presentations offered by project's beneficiaries during the Kickoff meeting held remotely on the 11th and 12th of February 2021 and also recap the main topics examined.

The above-mentioned presentations summarize the key technical and managing relating issues as discussed and approved during the meeting.

Table of Content

1	Inti	roduction5
2	EC	Participation
	2.1	Briefing from the CANOPIES Project Officer8
3	CA	NOPIES – Workplan and technical discussions9
	3.1	Work Package 1 – Aim and scope9
	3.2	Work package 2 – Aim and scope9
	3.3	Work Package 3 – Aim and Scope9
	3.4	Work Package 4 – Aim and scope9
	3.5	Work Package 5 – Aim and scope9
	3.6	Work Package 6 - Aim and scope9
	3.7	Work Package 7 – Aim and scope10
	3.8	Work Package 8 – Aim and Scope10
	3.9	Work Package 9 – Aim and Scope10
	3.10	Work Package 10 – Aim and scope10
4	Ma	in topics discussed during the KoM11
	4.1	Technical11
	4.2	Management
	4.3	Logistics
5	Anı	nexes

Abbreviations and Acronyms

CA	Consortium Agreement	
СО	Coordinator	
DoA	Description of Action	
EC	European Commission	
FS	Financial Statement	
GA	Grant Agreement	
КоМ	Kick-off Meeting	
MS	Management Staff	
PM	Project Manager	
РМС	Project Management Committee	
PO	Project Officer	
PR	Periodic Report	
SyGMa	H2020 System for Grant Management	
TS	Technical Staff	
UoR	Use of Resources	
WP	Work Package	
WPL	Work Package Leader	
PA	Precision Agriculture	

1 Introduction

The KoM was held remotely due to the active health and travel restrictions tied to the COVID-19 emergency.

The meeting was attended by the representatives of all CANOPIES beneficiaries, totaling 47 participants. During the two sessions all issues related to the commencement, management, finance and technicalities of CANOPIES project have been presented and thoroughly discussed.

The participants engaged in technical discussions during the two days and proved to be fully committed in the project tasks, as described in the Annex I to the Grant Agreement.

The table contains the names of the participants:

Beneficiary	Name Last Name		
UNIROMA3	Andrea	GASPARRI	
UNIROMA3	Federica	PASCUCCI	
UNIROMA3	Martina	LIPPI	
UNIROMA3	Stefano	PANZIERI	
UNIROMA3	Matteo	SANTILLI	
UNIROMA3	Renzo Fabrizio	CARPIO	
UNIROMA3	Antonio	FURCHÌ	
KTH	Dimos	DIMAROGONAS	
KTH	Danica	KRAGIC	
KTH	Hang	YIN	
KTH	Ali	GHADIRZADEH	
KTH	Alfredo	REICHLIN	
KTH	Wenceslao	SHAW-CORTEZ	
KTH	Pushpak	JAGTAP	
KTH	Carlos	Rodríguez DE COS	
UNIROMA 1	Daniele	NARDI	
UNIROMA 1	Thomas A.	CIARFUGLIA	
UNIROMA 1	Sara	KASZUBA	
UNIROMA1	Mulham FAWAKHERJI		
UPC	Alberto SANFELIU		
UPC	Ana PUIG – PEY CLAVE		
UPC	Juan ANDRADE-CETTO		
UNICLAM	Alessandro MARINO		
UNICLAM	Gianluca	ANTONELLI	
UNICLAM	Filippo	ARRICHIELLO	
UNICLAM	Giuseppe	GILLINI	
UNICLAM	Paolo Augusto	DI LILLO	
UNICLAM	Daniele	DI VITO	
UNICLAM	Giacomo GOLLUCCIO		
DTI	Tsampikos	KOUNALAKIS	

DTI	Lars	DAALGARD	
DTI	Kasper	CAMILLUS JEPPESEN	
DTI	Jonas	Bæch	
PALEBLUE	Felix	GORBATSEVICH	
PALEBLUE	Juan	CORREA	
PALEBLUE	Pascal	SERRARENS	
PALROBOTICS	Francesco	FERRO	
PALROBOTICS	Carlos	VIVAS	
PALROBOTICS	Sarah	TERRERI	
PALROBOTICS	Jordi	PAGES	
PALROBOTICS	Alessandro	DI FAVA	
PALROBOTICS	Alex	SANCHO	
PALROBOTICS	Lorna MCKINLAY		
PALROBOTICS	Delia GARCIA		
AGRIMESSINA	Francesco MESSINA		
AGRIMESSINA	Giuseppe	VALENZANO	
RSA	Alessandro	ALBINO FREZZA	

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems (CANOPIES)

Figure 1 - Screenshot during the Coordinator's presentation on the first day of the KoM

Figure 2 – Screenshot during the second day of the KoM

2 EC Participation

2.1 Briefing from the CANOPIES Project Officer

The Project Officer Antonio PUENTE RODERO (DG CNET-A) attended the meeting on the 12th of February. Antonio briefed the Consortium on his role and on the main managing relating issues to be attentively considered by the CANOPIES Consortium, in order to ensure a smooth implementation of the project.

The following key-items have been focused by the PO:

- Pre-financing and interim payments.
- Reporting to the EC.
- Ownership of the results generated in CANOPIES.

All beneficiaries introduced themselves describing their organization and the role they will be playing in CANOPIES.

3 CANOPIES – Workplan and technical discussions

3.1 Work Package 1 – Aim and scope

WP1 is dedicated to the technical and managing coordination of CANOPIES, the management of the communication among the project's partners and with the EC, the overall legal, contractual, financial and administrative management of the Consortium, and the coordination, the update and management of the CA together with the implementation of all actions necessary to fulfill the obligations of the GA. The CO (UNIROMA TRE) will be responsible for the technical and scientific coordination of the project, while beneficiary # 10 (RSA) will act as Project Manager being in charge of all typical reporting and management task required by the H2020 standard procedures,

3.2 Work package 2 – Aim and scope

WP2 focuses on defining all the requirements and specifications for the design of the integrated system. These comprise the agronomic specifications, the functional requirements of all the components of the integrated system, the dimensioning of the table-grape scenario that will be used for validation purposes. Ethical, legal and societal issues will be also taken into account.

3.3 Work Package 3 – Aim and Scope

WP3 is devoted to developing, integrating and testing the robotic platforms. Two farming and two logistic prototypes will be developed along with their localization and autonomous navigation capabilities. All the required robotic, system and simulation components, such as the perception system, the Box-Exchange Mechanism, the dual arm setup, and end-effectors, will be designed and developed. The networking communication infrastructure will also be designed. Continuous acceptance testing and integration phases will be carried out for the entire duration of the project.

3.4 Work Package 4 – Aim and scope

WP 4 aims to design new perception methods for modelling and detection of grapes, vineyard tree branches and other obstacles. Ripe grapes will be localized (position and orientation) in the 3D world by exploiting different types of vision sensors such as video cameras, stereovision cameras, event cameras, Lidar. Next, access paths will be planned for the robot arms to perform agronomic operations, for example pick a grape bunch or do a branch pruning. Finally, the agronomic quality assessment will be designed.

3.5 Work Package 5 – Aim and scope

WP5 is dedicated to design and develop all manipulation functionalities of the mobile manipulator system composed by the mobile base and the dual-arm system. These functionalities will form the basis for the implementation of all the PA tasks addressed in CANOPIES. Both coordinated and uncoordinated motions will be enabled, and force control algorithms will be devised to achieve physical interaction with the farmers and the environment. Low-level procedures for ensuring human safety will be implemented.

3.6 Work Package 6 - Aim and scope

WP6 aims to develop a novel approach for human-robot interaction combining predictive models of human motion, planning of joint actions, multi-modal interaction, and shared mental state. Both

implicit and explicit communication will be considered where implicit communication will be inferred from the human motion and prediction, while explicit communication will be achieved through a specific language. A virtual reality system will be developed to validate the devised methods. The interaction with the environment and with the human will be modelled in this system.

3.7 Work Package 7 – Aim and scope

WP7 is devoted to design of the methodologies for the coordination of the multi-robot system in a PA context. In the considered scenario, some agricultural robots are filling in their boxes while other logistic robots are moving around to support them by replacing their full boxes with empty ones. We will design coordinate control strategies involving both the agricultural robots and the logistic ones to optimally carry out the requested agronomic activities.

3.8 Work Package 8 – Aim and Scope

WP8 is dedicated to design task planning strategies for human-multi-robot systems in which humans may aid the multi-robot system during an agronomic task. Learning-by-demonstration methods will be considered to allow the robots to mimic human motion to appropriately execute complex tasks. Safe human intervention will be then guaranteed. A multi-robot, online re-planning approach will ensure the multi-robot system never enters a region occupied by a human, while adhering to the agronomic task specifications. Next, human intervention will be considered via human-in-the-loop commands for multi-robot task planning. When a human operator must adjust a high-level plan online in the event of unforeseen circumstances, the task planner must re-plan, while always respecting safety conditions. Finally, a virtual reality (VR) 3D environment will be created for human operators to interact with the robots in the field and implement the safe task planning methods.

3.9 Work Package 9 – Aim and Scope

WP9 focuses on the experimental validation on a table-grape vineyard of the integrated system capabilities. Incremental objectives will be considered for the validation: i) Field Validation of the Robot Navigation Functionalities; ii) Field Validation of the Robot Manipulation Functionalities; iii) Field Validation of the Agronomic Perception Functionalities; iv) Field Validation of the Multi-Robot Cooperation; v) Field Validation of the Multi-Robot Cooperation; vi) Field Validation of the Human-Multi-Robot Task Planning; and vii) Final Demo of the Integrated System. The field validation of the system capabilities has been organized according to the seasonal arrangement of the agricultural practices (December-January for pruning and July-September for harvesting) starting from year 2.

3.10 Work Package 10 – Aim and scope

WP10 aims at guaranteeing dissemination and promotion of the exploitation of CANOPIES. Dissemination will be conducted throughout the entire project: first, methods, concepts and ideas will be promoted, then as soon as some results will be available, these will be presented using the available platforms. The exploitation will be done in conjunction with the procurers and the companies. A web platform for communication will be developed. This site and connections to social media will be the basis for disseminating and sharing knowledge between as well as among project partners and external participants.

4 Main topics discussed during the KoM

The following is the listing of the main topics that have been discussed by the Consortium during the meeting. These can be categorized distinguishing among Technical, Logistic and management-related matters.

4.1 Technical

As far as the technical matters are concerned, the followings were the main topics discussed:

i) Navigational sensors/equipment requirements and specifications; ii) Agronomic perception sensors/equipment requirements and specifications; iii) HW-related integration aspects; iv) reshaping of the provisional GANTT chart of the project and, v) Discussion about dissemination actions, i.e., setting disseminations channels through Linkedin, creation of a common press release, creation of banners.

4.2 Management

Concerning the management of CANOPIES, the following items were thoroughly discussed and approved:

i) Project Management guidelines (D.1.1), including a) Distribution of the pre-financing; b) Governance of CANOPIES; c) Reporting to the EC; d) Standards applicable to internal documents and deliverables; and e) Internal scheduling to carry our final review of the deliverables, prior to submission; ii) Composition of the Project Management Committee.

4.3 Logistics

The discussions mainly focused on the impact of the COVID-19 emergency in the shorth term. In particular the main items addressed were: i) travel restrictions applicable per each Beneficiary; ii) additional costs related to COVID-19 travelling restriction to be included in the project's eligible travel costs (such as mandatory PCRs tests).

5 Annexes

- Agenda of the KoM
- Presentations (Beneficiaries)
- Presentations (Work Packages)

KoM Agenda

Day 1 – 11 February 2021

Morning session 9:45 - 13:00 (Technical Discussion)

09:45 Opening of KoM [A. Gasparri – A. Benedetto] (15 min)

10:00 Consortium Introduction (10 min each / short ppts are welcome)

11:40 Coffee Break

12:00 Project Overview, Ambition and Objectives [A. Gasparri] (30 min)

12:30 WP1 – Project Management [UNIROMA3+RSA – A. Gasparri + A. Frezza] (30 min)

- □ WP Objective, Tasks Description, Deliverables and Milestones
- □ Technical discussion (all tasks)
- □ Coordination and planning of activities

13:00 Lunch Break

Afternoon session 14:00 – 17:30 (Technical Discussion)

- 14:00 WP2 Functional Specifications [AGRIMESSINA TBA] (30 min)
 - □ WP Objective, Tasks Description, Deliverables and Milestones
 - □ Technical discussion (all tasks)
 - □ Coordination and planning of activities
- 14:30 WP3 Robot Development, Integration and Testing [DTI TBA] (30 min)
 - □ WP Objective, Tasks Description, Deliverables and Milestones
 - □ Technical discussion (all tasks)
 - □ Coordination and planning of activities
- 15:00 WP4 Agronomic-Oriented Perception [UPC TBA] (30 min)
 - □ WP Objective, Tasks Description, Deliverables and Milestones
 - □ Technical discussion (all tasks)
 - □ Coordination and planning of activities

15:30 Coffee Break

- 15:45 WP5 Single Robot Functionalities [UNICLAM TBA] (30 min)
 - □ WP Objective, Tasks Description, Deliverables and Milestones
 - □ Technical discussion (all tasks)
 - □ Coordination and planning of activities
- 16:15 WP6 Human-Robot Interaction [UNIROMA1 TBA] (30 min)
 - □ WP Objective, Tasks Description, Deliverables and Milestones
 - □ Technical discussion (all tasks)
 - □ Coordination and planning of activities
- 16:45 WP7 Multi-Robot Coordination [UNIROMA3 TBA] (30 min)

- □ WP Objective, Tasks Description, Deliverables and Milestones
- □ Technical discussion (all tasks)
- □ Coordination and planning of activities

17:15 Closing discussion

17:30 End of Day 1

Day 2 – 12 February 2021

Morning session 09:45 - 11:15 (with PO)

09:45 Opening of KoM [A. Gasparri]

09:50 Consortium Introduction (5 min each / short ppts are welcome)

10:40 Project Overview [A. Gasparri] (15 min)

10:55 Forewords by ICT Project Officer [A. PUENTE RODERO] (15 min)

11:15 Coffee Break

Morning session 11:30 – 13:30 (Technical Discussion)

11:30 WP8 – Task Planning for Human-Multi-Robot Systems [KTH – TBA] (30 min)

- □ WP Objective, Tasks Description, Deliverables and Milestones
- □ Technical discussion (all tasks)
- □ Coordination and planning of activities
- 12:00 WP9 Architecture Field Validation [UNIROMA1 TBA] (30 min)
 - □ WP Objective, Tasks Description, Deliverables and Milestones
 - □ Technical discussion (all tasks)
 - □ Coordination and planning of activities
- 12:30 WP10 Dissemination and Promotion of Exploitation [UPC TBA] (30 min)
 - □ WP Objective, Tasks Description, Deliverables and Milestones
 - □ Technical discussion (all tasks)
 - □ Coordination and planning of activities

13:00 Closing discussion

13:30 End of the Meeting

KoM Day 1

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in **Precision Agriculture Systems**

Kickoff Meeting Opening

Agenda – Day 1 (Morning)

Morning session 09:45 - 13:00

09:45 Opening of KoM [A. Gasparri – A. Benedetto]

10:00 Consortium Introduction (10 min each Partner)

11:40 Coffee Break

12:00 Project Overview, Ambition and Objectives [A. Gasparri]

12:30 WP1 – Project Management [UNIROMA3+RSA – A. Gasparri + A. Frezza] 13:00 Lunch Break

ROMA ∎TRE

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

2

February 11, 2021

Agenda – Day 1 (Afternoon)

Afternoon session 14:00 – 15:30 (Technical Discussion – Part I)

14:00 WP2 – Functional Specifications [AGRIMESSINA – TBA]

- WP Objective, Tasks Description, Deliverables and Milestones
- Technical discussion (all tasks)
- Coordination and planning of activities
- 14:30 WP3 Robot Development, Integration and Testing [DTI TBA]
- 15:00 WP4 Agronomic-Oriented Perception [UPC TBA]

15:30 Coffee Break

Afternoon session 15:45 – 17:30 (Technical Discussion – Part II)

15:45 WP5 – Single Robot Functionalities [UNICLAM – TBA]

- WP Objective, Tasks Description, Deliverables and Milestones
- Technical discussion (all tasks)
- Coordination and planning of activities

16:15 WP6 – Human-Robot Interaction [UNIROMA1 – TBA]

16:45 WP7 – Multi-Robot Coordination [UNIROMA3 – TBA]

17:15 Closing discussion

by the therapy 2020 Pressnah Prograd

17:30 End of Day 1

February 11, 2021

4

February 11, 2021

ROMA

Agenda – Day 2 (Morning)

Morning session 09:45 - 11:15 (with PO)

09:45 Opening of KoM [A. Gasparri]

09:50 Consortium Introduction (5 min each Partner)

10:40 Project Overview [A. Gasparri]

10:55 Forewords by ICT Project Officer [Antonio PUENTE-RODERO]

11:15 Coffee Break

(2)	Microsoft S Andred by the energie 2022 Presmost Programming (Predictionance Dates while based appression to 12/2024/00
February 11	, 2021

```
Kickoff Meeting - Roma Tre University - [Andrea Gasparri]
```

Agenda – Day 2 (Morning)

Morning session 11:30 – 13:30 (Technical Discussion)

11:30 WP8 – Task Planning for Human-Multi-Robot Systems [KTH – TBA]

- WP Objective, Tasks Description, Deliverables and Milestones
- Technical discussion (all tasks)
- Coordination and planning of activities

12:00 WP9 – Architecture Field Validation [UNIROMA1 – TBA]

12:30 WP10 – Dissemination and Promotion of Exploitation [UPC – TBA]

13:00 Closing discussion

d by the dense 2010 Pressuel Program

13:30 Lunch Break

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

ROMA

February 11, 2021

5

Welcome from UNIROMA3

Prof. Andrea Benedetto

- Full Professor of Civil Engineering
- Head of the Engineering Department

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

7

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

Consortium Introduction

Università degli Studi Roma Tre (UNIROMA3)

Description

- Young **public research university** founded by the Italian Ministry of Education, University and Research in **1992**.
- Roma Tre University is organized in **12 Departments** enrolling about **35.000** students and having about **1.400** academic and professional staff.
- Our Engineering Department was selected by the Italian Ministry of Public Education as one of the 180 Departments of Excellence in 2018.

February 11, 2021

4

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Università degli Studi Roma Tre (UNIROMA3)

5

Role in the Project

- <u>Leadership of Task T3.5</u> in WP3 (design of the autonomous navigating functionalities of the mobile robotic platform)
- <u>Leadership of Task T9.5</u> in WP9 (field validation of the multi-robot coordination capabilities)
- <u>Leadership of Task T9.7</u> in WP9 (final demonstration of the integrated system within a real-world (1:1 scale) table- grape vineyard)

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

1	The analysis is bound by the deriver 2000 Presmants Programmin Princhestagene concernance listed Agreement for 12020-000
February 11	, 2021

ROMA

HUNAH ROGERY COLLADO

Università degli Studi Roma Tre (UNIROMA3)

Team

Andrea Gasparri Associate Professor

Martina Lippi Research Affiliate

February 11, 2021

Stefano Panzieri Full Professor

Antonio Furchì Ph.D Student

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Giovanni Ulivi

Full Professor

Matteo Santilli

Research Affiliate

Federica Pascucci Associate Professor

Renzo Carpio Ph.D Student

Università degli Studi Roma Tre (UNIROMA3)

Expertise

- Field Robotics
- Autonomous Navigation
- SLAM
- Multi-Robot Coordination
- Distributed Estimation
- Distributed Control

Autonomous Navigation in Dynamic Environment

Multi-Robot Coordination with limited FOV

Large-Scale Simultaneous Mapping and Localization

Multi-Robot Collaboration

Università degli Studi Roma Tre (UNIROMA3)

Projects

PANTHEON — PRECISION FARMING OF HAZELNUT ORCHARDS (H2020-SFS-2017-1) [2017 – 2021]

PARADISE — PRECISION FARMING FOR SUSTAINABLE PRODUCTION IN SUBURBAN AREAS (POR-FESR 2014-2020 REGIONE LAZIO) [2020 – 2022]

RESISTO – RESILIENCE ENHANCEMENT AND RISK CONTROL PLATFORM FOR COMMUNICATION INFRASTRUCTURE OPERATORS (H2020-CIP-2016-2017) [2018 – 2021]

COCKPITCI – CYBERSECURITY ON SCADA: RISK PREDICTION, ANALYSIS AND REACTION TOOLS FOR CRITICAL INFRASTRUCTURES (FP7-SEC-2011-1) [2012 – 2014]

February 11, 2021

ATENA – ADVANCED TOOLS TO ASSESS AND MITIGATE THE CRITICALITY OF ICT COMPONENTS AND THEIR DEPENDENCIES OVER CRITICAL INFRASTRUCTURES (H2020-DS-2015-1) [2016 – 2019]

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

FUTURO

NECTAR – NETWORKED COOPERATIVE TEAMS OF AUTONOMOUS ROBOTS (FIRB FUTURO IN RICERCA 2008) [2010 – 2014]

9

Kungliga Tekniska Högskolan (KTH)

Description

- Largest technical university in Sweden (1/3 of Sweden's capacity for engineering and technical research at post-secondary level)
- Part of WASP and KTH Digital Future environments

• Expertise & perspectives from the private and public sectors provided in collaborations & knowledge exchange with external partners and other universities

$\langle \rangle$	The ansatz is facilled by the herizer 2021 Processed Programmer of the factors of their ansatz faced Agreement for 12101080
February 11	, 2021

Kungliga Tekniska Högskolan (KTH)

Role in the Project

- Leadership of WP8 (Task Planning for Human-Multi-Robot Systems)
- Leadership of Task T9.6 in WP9 (Field Validation of the Task Planning for Human-Multi-Robot Systems)

6.5	This arright is facilited by the mergine 2020 Procession Programming (Provide mergine Procession and Procession Procession Programming	
February 11, 2021		

11

Kungliga Tekniska Högskolan (KTH)

Unit Members:

Decision and Control Systems (DCS) Lab

Carlos Rodríguez de Cos

Expertise: Task planning, Control of multi-robot systems

Kickoff Meeting - KTH - [Dimos Dimarogonas]

February 11, 2021

Kungliga Tekniska Högskolan (KTH)

Unit Members:

Robotics, Perception, and Learning (RPL) Lab

Danica Kragic

Hang Yin

Ali Ghadirzadeh

Expertise:

- Vision for robotics
- Learning

$\langle \rangle$	You, ang at a harded by the design 2000 Featureach Programme (Find compare from units front Agreement for 1000 paths
February 11	, 2021

Kickoff Meeting - KTH - [Dimos Dimarogonas]

Kungliga Tekniska Högskolan (KTH)

Projects:

- Horizon 2020 Areoworks (2015-2018)
- H2020 Co4Robots (2017-2020)
- ERC StG BUCOPHSYS (2015-2020)
- SSF FACT (2016-2020)
- H2020 socSMCs (2015-2019)

February 25, 2021

Dissemination and Promotion of the Exploits

Role in the Project

- Leadership of WP6 (Human Robot Interaction)
- Leadership of WP9 (Field Validation)

Sapienza Università di Roma (UNIROMA1)

Sapienza Università di Roma (UNIROMA1)

Description

February 11, 2021

15

- One of the oldest (1303) and largest Universities, the largest in Eu.
- Sapienza University is organized in 68 Departments, 12 Faculties enrolling about 115.000 students with about 5500 academic and professional staff.
- Our Department was selected by the Italian Ministry of Public Education among the 180 Departments of Excellence focused on Cyber Security, 2018.

15

METIMONTO DI FIGEGNERIA PROKANTICA DMATICA E GEITIORAGI ANDONIO BURIDI

APIENZA

Sapienza Università di Roma (UNIROMA1)

Role in the Project

- Leadership of Task T4.3 in WP4 (Grape Quality Estimation)
- Leadership of Task T6.3 in WP6 (Human Robot Communication)
- Leadership of Task T6.3 in WP6 (Human Robot Awareness)
- Leadership of Task T9.4 in WP9 (Field validation of the hri capabilities)

C	size 2021 Prociments Programm				DRAMINIMENTO DI PAGEGATRI MITEMATICA E GUITIONAGE A	ак лигональта: млонато Шацов
February 11, 2021	et Agerennet No 1200 años	Kickoff Mee	ting – UNIROMA1 – [Daniele Nardi]	8	SAPIENZA UNIVERSITA DE ROMA	17
17						
					CANOR	Es
Sapienz	za Univer	sità di l	Roma (UNIF	ROMA1)	ALL AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	ALL ALL ALL
				the Cost of	1	
Lab RoCoC	o <u>http://www</u>	.diag.unirom	<u>a1.it/~labrococo</u>			
FOT					P	in
		1	0		05	
Alex	(BADA					
Daniele Nardi	Luca locchi	Giorgio Grisetti	Mulham Fawakerij WP4	Thomas Ciarfuglia WP4	Sara Kaszuba	WP6
The angle of the second s	tin 2018 Protosoft Programma 1 Aground für 1200 bitti			•	MUTCHARTICA & GENTROMAN, A	a ann in 1990. Ann ann ann ann ann ann ann ann ann ann
February 11, 2021		Kickoff Mee	ting – UNIROMA1 – [Daniele Nardi]		SAPIENZA USINERSITÀ DE BOMA	18

Sapienza Università di Roma (UNIROMA1)

Team Expertise

- Artificial Intelligence
- Human Robot Interaction
- SLAM
- Action Planning
- Robot Perception
- Al and Robotics for **Precision Farming**

	Minumpers is handed by the designed 2003 Processeds Programmer of Minute approximate based approach for 2003 Min
February 11	2021

February 11, 2021

INITIMENTO DI PRODURTHA PROMANTICA TOMATICA E GEITIONALI ANDORIO BURDET

19

SAPIENZA

19

Projects

February 11, 2021

European Robotics League plus Smart Cities Robot Competitions CA H2020 2019-2021

A European AI on demand platform and Ecosystem

H2020 2019-2021

Bringing AI Planning to the European Al On-Demand Platform

Kickoff Meeting – UNIROMA1 – [Daniele Nardi]

H2020 2021-2023

BUBBLES: Defining the **BU**ilding Basic Blocks for a U-Space SEparation Management Service

FP7 2013-2016

European Robotics League plus Smart Cities Robot . Competitions

H2020 2015-2018

Robots for Exploration, Digital Preservation and Visualization of Archeological Sites

FP7 2013-2016

20

Universitat Politècnica de Catalunya (UPC)

Role in the Project

- Leadership of WP4 (Agronomic-oriented perception)
- Leadership of WP10 (Dissemination and Promotion of the Exploitation)

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

Universitat Politècnica de Catalunya (UPC)

Description

21

- The Universitat Politècnica de Catalunya (UPC) (www.upc.edu) is a public institution dedicated to research and higher education and it is one of the biggest universities in Spain, with over 32.000 students, 33 departments and 205 research groups. UPC participates in this project with IRI and UMA.
- The Institut de Robòtica i Informàtica Industrial (IRI, www.iri.upc.edu) is a Joint Research Institute that hosts researchers both from the Universitat Politècnica de Catalunya (UPC) and from the Spanish Scientific Research Council (CSIC), and participate in this project as a Joint Research Unit (JRU), with UPC leading the participation, and CSIC acting as 3rd party.
- Unit of Agricultural Machinery (http://www.uma.deab.upc.edu) is a recognized research group bellowing to UPC. Main activities of UMA are focused in research, education and extension activities related with agricultural machinery.

21

22

Universitat Politècnica de Catalunya (UPC)

Role in the Project

- Leadership of Task T4.1 in WP4 (Agronomic Target Detection and Modelling)
- Leadership of Task T4.2 in WP4 (Agronomic Target Localization)
- Leadership of Task T6.1 in WP6 (Human-Body Prediction)
- Leadership of Task T6.2 in WP6 (Human-Robot Motion Planning)
- Leadership of Task T10.1 in WP10 (Website Construction and Updates)
- Leadership of Task T10.2 in WP10 (Dissemination)
- Leadership of Task T10.4 in WP10 (Communication Activities and Event)

$\langle 0 \rangle$	The prototion of the factor DDD Pederary Programming the factor of the f
February 11	, 2021

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]
--

24

UNIT Members

- Alberto Sanfeliu (UPC-IRI)
- Emilio Gil (UPC-UMA)
- Juan Andrade-Cetto (CSIC-IRI)
- Antonio Grau (UPC-IRI)
- Yolanda Bolea (UPC-IRI)
- Rene Alquezar (UPC-IRI)
- Ana Puig-Pey (UPC-IRI)
- Joan Vallvé (UPC-IRI)
- Francesc Moreno-Noguer (CSIC-IRI)
- Anais Garrell (CSIC-IRI)
- Joan Solà (CSIC-IRI)

by the factory 2008 Processory Programs

February 11, 2021

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

February 11, 2021

Universitat Politècnica de Catalunya (UPC)

Expertise

IRI focuses its activity in human-centered robotics research with expertise in various areas of robotics, such as computational kinematics and geometry, computer vision, industrial robotics, mobile robotics (legged and wheeled robots), artificial intelligence, and energy systems.

UMA has large experience in viticulture, especially in spray application technology. Precision Agriculture linked to pesticide application equipment, variable rate application, development of new technologies to improve efficacy of sprayers.

- Robotics
- Social robotics
- Artificial Intelligence
- Human-body prediction

10.04

- Perception systems
- Precision Farming

February 11, 2021

25

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

Universitat Politècnica de Catalunya (UPC)

Searching and tracking people with cooperative mobile robots [AURO 2018]

- Deep and Reinforcement Learning
- Path and action planning Shared planning and reasoning

Anticipative kinodynamic planning: multi-objective robot navigation [AURO 2019]

Teaching a Drone to Accompany a Person [IROS19

NOP

IRI

Universitat Politècnica de Catalunya (UPC) : IRI

Sensor fusion in unmanned aerial vehicles (H2020 AEROARMS project) [Auton. Robots 2018]

3D Lidar Deep learning for object tracking [ICPR, 2018]

Precise localization in aerial grasping (EU ARCAS project)

Ultra fast object tracking (microseconds) with event-based cameras (DPI EB-SLAM project)

NDA

February 11, 2021

17:40

Sensory data fusion for localization SLAM and Deep Learning Object detection and tracking using Deep

Learning

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

27

Universitat Politècnica de Catalunya (UPC) : IRI

Real-time SLAM in a truck (EU LOGIMATIC project)

Autonomous navigation of straddle carrier in port container terminals (H2020 LOGIMATIC project)

STRADDLE CARRIER AUTOMATION AND AUTONOMOUS NAVIGATION DEMOSTRATION

systems (FICOSA), [ECMR17]

Delivery of persons and goods (DPI ColRobTransp project)

February 11, 2021

tracking

Perception, path planning and decision making

Deep learning for vehicle detection and

Kickoff Meeting - Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

28

Universitat Politècnica de Catalunya (UPC):UMA

Pesticide application Precision farming

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

29

Universitat Politècnica de Catalunya (UPC)

IRI Projects

AI4EU: A European AI On Demand Platform and Ecosystem (H2020-ICT-2018-2-825619)[2019-2021]

TERRINet: The European Robotics Research Infrastructure Network (H2020-INFRAIA-2017-1-two-stage-730994)[2017-2021]

ROBOCOM++: Rethinking Robotics for the Robot Companion of the future (FLAG-ERA JCT 2016)[2017-2020]

SciRoc: European Robotics League plus Smart Cities Robot Competitions (H2020-ICT-2017-1-780086)[2018-2022]

GAUSS: Galileo-EGNOS as an Asset for UTM Safety and Security (H2020-GALILEO-GSA-2017-1-776293)[2018-2021]

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

February 11, 2021

Universitat Politècnica de Catalunya (UPC)

IRI Projects

AEROARMS: AErial RObotics System integrating multiple ARMS and advanced manipulation capabilities for inspection and maintenance (H2020_ICT-2014-1-644271)[2015-2019]

LOGIMATIC: Tight integration of EGNSS and on-board sensors for port vehicle automation (H2020-Galileo-2015-687534) [2016-2019]

(FP7-ICT-2012-601116)[2013-2018]

Cargo-ANTS: Cargo handling by Automated Next generation Transportation Systems for ports and terminals (FP7-SST-2013-605598) [2013-2016]

ARCAS: Aerial Robotics Cooperative Assembly System (FP7-INFSO-ICT-287617)[2011-2015]

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

February 11, 2021

Universitat Politècnica de Catalunya (UPC)

UMA Projects

NOVATERRA: Integrated novel strategies for reducing the use and impact of pesticides, towards sustainable mediterranean vineyards and olive groves (H2020)[2020-2024]

INNOSETA: Accelerating Innovative practices for Spraying Equipment, Training and Advising in European agriculture through the mobilization of Agricultural Knowledge and Innovation Systems (H2020) [2018-2021]

OPTIMA: Optimized Pest Integrated Management to precisely detect and control plant diseases in perennial crops and open-field vegetables (H2020)[2018-2021]

AGRICT - Erasmus +: Precision farming education (H2020)[2018-2021]

February 11, 2021

Kickoff Meeting – Universitat Politècnica de Catalunya- [Alberto Sanfeliu]

32

Università degli Studi di Cassino (UNICLAM)

Description

- Public research university founded by the Italian Ministry of Education, University and Research in 1979.
- UNICLAM University is organized in 5 Departments enrolling about 9.000 students and having about 500 academic and professional staff.
- Our Engineering Department (DIEI) was selected by the Italian Ministry of Public Education as one of the 180 Departments of Excellence in 2018.

Kickoff Meeting - Università degli Studi di Cassino - [Alessandro Marino]

NDP

33

Role in the project

- Leadership of WP5 (Single Robot Functionalities)
- Leadership of Task 5.1 (Two Arms Coordination Functionalities)
- Leadership of Task 5.2 (Robot Safety Functionalities)
- Leadership of Task 5.3 (Robot Physical Interaction Functionalities)
- Leadership of Task 9.2 (Field Validation of the Robot Manipulation Functionalities)

February 11, 2021

Kickoff Meeting - Università degli Studi di Cassino - [Alessandro Marino]

February 11, 2021
Università degli Studi di Cassino (UNICLAM)

Alessandro Marino Associate Professor

Paolo Di Lillo Post Doc

February 11, 2021

Stefano Chiaverini Full Professor

Daniele Di Vito Post Doc

webuser.unicas.it/lai/robotica

Kickoff Meeting - Università degli Studi di Cassino - [Alessandro Marino]

Giuseppe Gillini

Post Doc

Gianluca Antonelli

Full Professor

Filippo Arrichiello Associate Professor

Giacomo Golluccio PhD Student

NOP

Giuseppe Fusco Associate Professor

35

HUM PARA

NDP.

Università degli Studi di Cassino (UNICLAM)

February 11, 2021

Kickoff Meeting - Università degli Studi di Cassino - [Alessandro Marino]

Lecce

Kickoff Meeting - Università degli Studi di Cassino - [Alessandro Marino]

Firenze

38

February 11, 2021

Environment

Ancona

Università degli Studi di Cassino (UNICLAM)

EUMR H2020 (2018-21) Robotic subsea exploration technologies

TARMEM QNRF (2018-21) CMU Doha

C4E - PON (2018-21) Monitoring of illegal spills through the synergistic use of advanced technologies

Progetto Dipartimenti di Eccellenza MIUR (2018-22)

 ROBILAUT
 PON (2019-2022)

 MoBILe sampling robot with underground autonomous navigation

mark 2010 Pressound Programm

N.

ROBUST H2020 (2015-20) Robotic subsea exploration technologies

AEROARMS H2020 (2015-19) Aerial Robots with multiple arms

WiMUST H2020 (2015-18) Widely scalable Mobile Underwater Sonar Technology

DexROV H2020 (2015-18) Dexterous ROV Operations Communications Latencies

d'Actions

Kickoff Meeting - Università degli Studi di Cassino - [Alessandro Marino]

NDP

39

Università degli Studi di Cassino (UNICLAM)

Academic Spin-off

- To bridge the gap between research and implementation
- Expertise in several fields of robotics

February 11, 2021

Coding

- C++Python
- ROSPLC

EveryBotics

Robotics

- Industrial robotics
- Mobile robotics
- Multi-robot systems
- Marine robotics

ΙΟΤ

- Big Data
- Satellite Imagery Mining
- Signal Processing
 Advanced Network
 - Advanced Networks

Kickoff Meeting - Università degli Studi di Cassino - [Alessandro Marino]

Description

- Self-owned and not-for-profit institution that dates back to 1906, organized in 7 major divisions with more than 40 centers of expertise.
- DTI's Centre for Robot Technology is located in Odense and is a leading European robotics innovator with a staff of around 45 robotic experts and 2800m2 of innovation facilities.
- DTI is a pioneer for application-orientated technology and knowledge transfer between research and the business community, particularly for SMEs.

Kickoff Meeting - Danish Technological Institute - [Tsampikos Kounalakis]

AUTOMATION

DIGITALISATION & INDUSTRY 4.0

PRODUCTIVITY

& QUALITY

ROBOT SAFETY

Kickoff Meeting - Danish Technological Institute - [Tsampikos Kounalakis]

MOBILE ROBOTS

COLLABORATIVE

ROBOTS

VISION & SENSORS

NDA

February 11, 2021

Danish Technological Institute (DTI)

Role in the Project

DTI is lead on WP3

- HW and SW development and integration of the robotic prototypes.
- Design, develop and test required prototype mechanisms.
- Endow the robotic prototype with autonomous localization and navigation capabilities.
- Acceptance testing of the robotic prototypes.

$\langle \rangle$	The angle () holded by the deriver 2000 Perimente Programmer of the foreignest conservation black Agreement for 2000 MMB
February 11	. 2021

- Leadership of Task T2.2 in WP2 (robot specifications and KPIs)
- Leadership of Task T9.1 in WP9 (field validation of robot navigation)

Danish Technological Institute (DTI)

Team

Lars Dalgaard Section Leader

Tsampikos Kounalakis Consultant – CANOPIES project manager

February 11, 2021

Kickoff Meeting - Danish Technological Institute - [Tsampikos Kounalakis]

Kasper Camillus Jeppesen Consultant

BANISH TECHNOLOGICAL

Expertise

February 11, 2021

47

Danish Technological Institute (DTI)

Relevant Projects

agROBOfood - DIH network (DT-ICT-02, 2019-2024) [2019 - 2024]

COVR – Safety for Collaborative Robots (H2020-ICT) [2018-2021]

S3CAV - Simultaneous Safety and Surveying for Collaborative Agricultural Vehicles (ICT-Agri) [2016 - 2018]

Cobot Knowledge Lab

Tomato Picking Robot

(Eurostars)

[2018-2020]

(national project) [2019-2021]

0.0

SafeCOP - Safe Cooperating Cyber-Physical Systems using Wireless Communication (ECSEL-JU) [2016-2019]

R5-COP - Reconfigurable ROSbased Resilient Reasoning Robotic Cooperating Systems (ECSEL-JU) [2014-2017]

February 11, 2021

Kickoff Meeting - Danish Technological Institute - [Tsampikos Kounalakis]

PaleBlue AS (PALEBLUE)

 PaleBlue is a leading simulation company with experience in VR, AR and 3D simulators. 2019 Top 10 Simulation company.

- Founded in 2013 in Stavanger, Norway. Now offices in NO, NL, RU and US.
- Delivering simulators across segments for Oil & Gas (Neptune Energy), Space (NASA and ESA), Healthcare (Gullak), and Governmental.

1.1	The angent's build by the decisive 2022 Parlmanik Programme Physics and the second states and a second second the 2218 Mith
February 11	, 2021

```
Kickoff Meeting – PaleBlue AS - [Felix Gorbatsevich]
```


49

```
49
```

PaleBlue AS (PALEBLUE)

Role in the Project

- Lead the development of the 3D and VR simulation platform components and interfaces to facilitate virtual environments for interactions between robots, humans and the environment.
- Lead the development of:
 - VR Multi-Human-Multi-Robot Interaction Component
 - VR Multi-Robot Component
 - VR Human-Robot Interaction Component
 - VR Agronomic-Oriented Perception
 - VR Farming Environment.

122	The property builded by the therapy 2020 Presentable Programmer (PPA) for the property circles under the Prove Agreement the 2020 bits

February 11, 2021

51

Kickoff Meeting – PaleBlue AS - [Felix Gorbatsevich]

February 11, 2021

- Leadership of Task T6.5 in WP6 (VR Human-Robot-Interaction Component)
 - Leadership of Task T7.5 in WP7 (VR Multi-Robot Component)

Leadership of Task T5.4 in WP5 (VR Mobile-Robot Component)

• Leadership of Task T8.4 in WP8 (VR Multi-Human-Multi-Robot Interaction Component)

Kickoff Meeting – PaleBlue AS - [Felix Gorbatsevich]

Role in the Project

PaleBlue AS (PALEBLUE)

- Leadership of Task T2.6 in WP2 (Virtual Reality Farming Environment Specifications)
- Leadership of Task T3.7 in WP3 (Simulated Environment and Basic Robotic Components)
- Leadership of Task T4.4 in WP4 (VR Agronomic-Oriented Perception Component)

1.1	This property is founded by the metrical 2020 Pyermouth Programms (Principanguar Ensemble state states and pyermouth the 12222 pitch
February 11	, 2021

Role in the Project

PaleBlue AS (PALEBLUE)

52

51

PaleBlue

PaleBlue AS (PALEBLUE)

Team Members

Dr. Felix Gorbatsevich

Juan Correa

Vladimir Keda

Urte Villnow

Vladimir Dukhanin

Kickoff Meeting – PaleBlue AS - [Felix Gorbatsevich]

PaleBlue

53

53

PaleBlue AS (PALEBLUE)

Expertise

- Training simulators
- Kinematic physics simulation
- Real-time 3D and Virtual Reality
- Multi-user collaboration
- Simulation for robotics

The angle of the second second

February 11, 2021

Kickoff Meeting - PaleBlue AS - [Felix Gorbatsevich]

PaleBlue

PAL Robotics (PAL)

Team

Principal Investigator

Francesco Ferro

francesco.ferro@pal-robotics.com

February 11, 2021

Project administration

Sarah Terreri sarah.terreri@pal-robotics.com European Project Manager

Research Team

Dr. Alessandro Di Fava

alessandro.difava@pal-robotics.com **Robotics Engineer** Technical coordination of PAL Robotics' EU projects team

Dr. Jordi Pages

jordi.pages@pal-robotics.com Head of Intra-logistics Solutions **TIAGo Product Manager**

CANOPIES Internal Group

canopies@pal-robotics.com Technical team Kickoff Meeting - PAL Robotics

0 /

57

PAL Robotics (PAL)

PAL Robotics (PAL)

Role in CANOPIES

- Agronomic dual arms system design (T3.2 leaders)
 - Starting point: PAL Robotics' **TIAGo++ upper body**
 - **Customizations** include: torque sensors for each arm's joint, 2 DoFs in the torso base, investigating the increase in IP rating for dust and water protection, etc.
- Agronomic end-effectors design for harvesting and pruning (T3.3 leaders)
- Expose a hardware abstraction layer with open interfaces for the mid-level control (WP3, WP5, WP6, WP8)
- Participation in Requirements, Validation, Dissemination and Exploitation activities (WP2, WP9, WP10, **T10.5 leaders**)
- Timeline
 - First Release of Robot Prototypes at M14
 - Final Release of Robot Prototypes at M40

$\langle \rangle$	Thu angest is builded by the density 2000 Presenants Programs (Princhangene Draw, ander Nicht Ageiersent No. 1212/2008/b

```
February 11, 2021
```

Kickoff Meeting - PAL Robot	tics
-----------------------------	------

Agrimessina (AGRIMESSINA)

Description

- Table grapes grower and marketer since 1960;
- More than 12.000 Tons of grapes yearly harvested;
- 350 Hectare total production around Puglia;
- 60 varieties of table grapes (mostly seedless);
- Main Italian marketer in UK with 70% market share in supermarkets chain.

Kickoff Meeting - Agrimessina - [Francesco Messina - Giuseppe Valenzano]

60

February 11, 2021

ΡΛι

ROBOTICS

61

Agrimessina (AGRIMESSINA)

Team

Francesco Messina

Agrimessina sales manager

February 11, 2021

ann -

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

Agronomist

NOP

Agrimessina (AGRIMESSINA)

Expertise

- Table grapes agronomic aspects;
- Harvesting operations;
- Pruning operations;
- Post-harvest techniques;
- Table grapes industry.

Kickoff Meeting - Agrimessina - [Francesco Messina - Giuseppe Valenzano]

63

February 11, 2021

or Messino

63

RSA Srl (RSA)

Shorth Company profile

Founded in 2001, RSA is an Italian SME specializing in management consulting services for high-end innovation processes and industrial development. Main activities focus on:

(i) Technical assistance to facilitate client's access to European and Italian funding instruments such as:

- ~ SMEs support funding for innovative industrial investments.
- R&D funding (Industry, Academia and PRBs). EFRD (2007-14; 2014-2020) funding schemes for innovation. FP6 FP7 **H2020** (mainly EASME funding schemes like SME Instrument, FTI).

(ii) Project management applied to Italian and EU [FP7, H2020, LIFE] funding schemes. Main activities include:

- Support partnership creation.
- Support structuring the project.
- Design and development of appropriate management structures (customized on project's needs) Proposal co-writing.
- Project's monitoring and coordination.

(iii) Business planning & feasibility studies to support Tech Transfer in Research infrastructures and SMEs) such as (active):

- √ Socio-economic impact assessment of EUPRAXIA research infrastructure in the regional (Lazio) and national context and study on technological spill-over effects (INFN-LNF).
- Business planning and cost-effective resource management of LATINO (Laboratory in Advanced Technologies for INnovation) and SABINA (Source of Advanced Beam Imaging for Novel Applications) innovation projects co-financed by EFRD Lazio Italian Institute for Nuclear Physics (INFN-LNF).

(iii) Programme monitoring (EFRD), evaluation (EFRD, Medio Credito Centrale, Italian Ministry for Economic Development - MISE), external independent auditing (EFRD, EAFRD, FP7, H2020); anti-fraud auditing (Medio Credito Centrale, Invitalia).

Kickoff Meeting - RSA srl - [Alessandro Albino Frezza]

66

RSA Srl (RSA)

Role in CANOPIES

T1.2 Project Management.

This task deals with the implementation of all typical organizational and coordination actions relating to the management of the GA and CA. Main RSA activities will include:

- support the CO to run the overall management of the Project and workplan monitoring;
- support the CO in organizing all periodic meetings to be held among partners on a regular basis;
- □ support the Project Management Committee (PMC);
- 📮 keep track of the budget through the monitoring of the Use of the Resources (UoR) on a regular basis (every 6 months);
- support the CO as additional point of contact with the Commission for any contractual matter; liaison with EC, covering of review meetings, submission of deliverables, etc.

Kickoff Meeting – RSA srl - [Alessandro Albino Frezza]

Assigned Deliverables: D1.1, D1.2, D1.3 + Monitoring of UoR

February 11, 2021

65

RSA Srl (RSA)

Staff involved

Dr. Alessandro ALBINO FREZZA

- □ Former Head of the Industrial Liaison Office and EU Fund Raising office at UNIROMA TRE (1996-2016). 25+ years of experience in the identification, designing and management of Research and Technological Development projects (R&TD) and TT Initiatives at international (including EC Framework Programmes), national and local level.
- Expert in accessing and managing multi-partner initiatives in the field of, collaborative research (Academia SMEs), industrial research and SMEs support.
- □EU Projects management (including financial auditing).
- □ Technical. assistance for the implementation of local development integrated projects (EFRD, ESF). Independent expert evaluator for R&TD projects (FP6, H2020-EIC-FTI-2018-2020_23-05-2019, H2020-SC1-PHE-CORONAVIRUS-2020-2) and Italian regional development programmes within EFRD ESF funds.
- Active H2020 coordination tasks:
 - ✓ GISCAD-OV Galileo Improved Services for Cadastral Augmentation Development On-field Validation (GA No. 870231) -H2020-SPACE-EGNSS-2019 – Type of Action IA
 - ✓ FLASH Far-infrared Lasers Assembled using Silicon Heterostructures (GA No. 766719) H2020 FETOPEN-1-2016-2017 Type of Action RIA
 - ✓ PANTHEON Precision Farming of Hazelnut Orchards (GA No. 774571) H2020-SFS-2017-1 Type of Action RIA.

RSA

Let's Now Enjoy the Coffee Break!!!

February 11, 2021

67

Don't be shy! Let's get to know each other!

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

Project Overview, Ambition and Objectives

CANOPIES – Where it all started...

International Forum of Agricultural Robotics 2019 (FIRA 2019)

- Discussion with Giuseppe Valenzano
- Real-Needs of the Farmers
 - 1. Shortage of farmworkers
 - 2. Standardized quality of table-grape
 - 3. Modern sustainable operational model
- Meeting with Francesco Messina and Giuseppe Valenzano

$\langle 0 \rangle$	The angest's based by the merger 2001 Systematic Programming (Principage) can write fund by several for 2000 data				
February 11, 2021					

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Inspection and maintenance of infrastructure

Agri-food

February 11, 2021

4

Healthcare

Agile production

3

Specific Challenge - Priority Areas

Four Priority Areas (PAs) are targeted:

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Call: H2020-ICT-2018-20 (ICT-46-2020)

Call: H2020-ICT-2018-20 (ICT-46-2020)

Specific Challenge - Overview

- While robots originated in large-scale mass manufacturing, they are now spreading to more and more application areas.
- In these new settings, robots are often faced with new technical and nontechnical challenges.
- This topic addresses these issues in a modular and open way and reduce the barriers that prevent a more widespread adoption of robots.

∎ROMA TRE

3

Call: H2020-ICT-2018-20 (ICT-46-2020)

Specific Challenge - Ambition

- Develop appropriate autonomous capability that has impact on the efficiency of key applications in the Priority Areas and moves beyond the current state of the art.
- Autonomous capability should be built from core technologies and should be proved and tested through pilot demonstrators that embed within real or near real environments.

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Call Overview: H2020-ICT-2018-20

Scope: Research and Innovation Actions (RIA) - Robotics Core Technology

- Al and Cognition: Al provides tools to make systems cognitive. Cognition equips robots with the ability to safely interact with people, their environments or other robots, to learn and to categorise, to make decisions and to derive knowledge.
- **Cognitive Mechatronics:** Mechatronic systems where sensing and actuation are closely coupled with cognitive systems are expected to deliver improved control, motion, interaction (including all modalities), adaptation and learning, and safer systems.
- Socially cooperative human-robot interaction: Cooperative human-robot interaction is critical in many work
 environments from collaborative support, e.g. passing tools to a worker, navigation in complex work environments, human-friendly
 and human assistive interactions, to the design of exo-skeletons able to provide motion that is sympathetic to the user.
- Model-based design and configuration tools: Deploying robotics at scale in application areas where tasks need to be defined by the user requires easy-to-use configuration tools. Embedding and sharing of knowledge between tools is essential, as is standardisation across the interfaces to connect systems and modules (taking into account cybersecurity issues, including security by design and data integrity).

February 11, 2021

6

February 11, 2021

5

ROMA

5

Call Overview: H2020-ICT-2018-20 (ICT-46-2020)

Expected Impact

- Improved technical capability in each of the core technologies over the current state of the art.
- A greater range of applications in the prioritized application areas that can be demonstrated at TRL 3 and above.
- The lowering of technical barriers within the prioritized applications areas.

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Call: H2020-ICT-2018-20

Call Overview

February 11, 2021

7

8

- Topic: ICT-46-2020
- Type of Action: RIA IA CSA
- Overall Submissions: 136 proposals
- Funded Research and Innovation Action (RIA): 6 proposals
- Funded Innovation Action (IA): 6 proposals
- Funded Coordination and Support Action (CSA): 1 proposal

$\langle \rangle$	Thu angert's funded by the desizer 2020 Freemank Programm (Physicanger Dises under Nate Agreement So 2020 MM				
February 11, 2021					

ROMA TRE

Call: H2020-ICT-2018-20 (ICT-46-2020)

CANOPIES in a nutshell

- Type of Actions: RIA
- Priority Area: Agri-Food
- Robotics Core Technology: Socially cooperative human-robot interaction
- Expected Impact: TRL 6
- Budget: € 6 904 940

February 11, 2021

February 11, 2021

10

9

Consortium: 5 Countries, 5 Universities, 1 Research Center, 4 SMEs

Motivation: PA and Farming Future

The New Challenges Facing Agriculture

 The Agri-Food Sector is one of the most important providers of livelihoods and is central to the fight against poverty and hunger

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

- One challenge is how to feed the increasing world population without expanding the amount of land allocated to farming
- Another challenge is the lack of farm workers, due to the seasonal nature of the work and the migration of workforce to more stable productive sectors

Kickoff	Meeting -	Roma	Tre	University	1 -	[Andrea	Gasn
KICKUTI	wieeting -	Nonna	ne	University		Inninea	Gash

∎ROMA ∎TRE

Motivation: PA and Farming Future

The New Challenges Facing Agriculture

- The three major challenges of the agri-food sector are:
 - i) feeding a growing population;
 - ii) providing a livelihood for farmers and farmworkers,
 - iii) protecting the environment.

Motivation: PA and Farming Future

The Role of Precision Agriculture (PA)

"PA is a management strategy that gathers, processes and analyses temporal, spatial and individual data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production"

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

[cit. International Society of Precision Agriculture (<u>www.ispa.org</u>)]

February 11, 2021

12

February 11, 2021

11

ROMA

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

• PA can make a significant contribution to **food security** and **safety**: • Producing more with less by enhancing food safety and plant health.

• Environmentally friendly and generate sustainable productivity gains.

technological skills; environmental skills; and managerial skills.

• Enhancement of work practice, farmland conditions and business models;

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Motivation: PA and Farming Future

Motivation: PA and Farming Future

• PA can promote more **sustainable** ways of **farming**:

The Role of Precision Agriculture (PA)

• PA will trigger wider societal changes:

• PA requires the learning of **new skills**:

How Robotic Technology could make a difference

- Intelligent agricultural robots improve repeatability, precision, operational consistency and efficacy and minimize soil compaction and drudgery.
- Robots with human-like or improved skills can can help mitigate labour shortages and can be adapted to human-unfriendly operating conditions.
- Scalability over large fields can be achieved by deploying fleets of robots and by developing tailored Multi-Robot Coordination (MRC) strategies.

February 11, 2021

February 11, 2021

14

13

∎ROMA

ROMA TRE

Motivation: PA and Farming Future

How Robotic Technology could make a difference

Agricultural Robots must possess various capabilities:

- Safety: robots must never cause harm to humans, to animals or valuable items, despite working in largely unstructured and dynamic environments.
- Flexibility: robots should be easily reconfigurable based on crop parameters (variety, size, maturity) and based on the given agronomic intervention;
- Adaptability: robots should adapt to different working conditions (e.g., different terrain, soil and wheatear conditions) by learning while working from human and/or from experience

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

February 11, 2021

15

Motivation: PA and Farming Future

Why Agriculture needs Humans

- Humans within the system provide additional benefits for handling complex tasks and/or unexpected situations, detecting and correcting anomalies during task execution and **supporting** automated decision making.
- Multiple task modes can be envisaged, where the level of autonomy can be changed according to the task, operating conditions and robot capabilities (which might change over time if the robots can learn).
- Humans complement the robot by making the overall system flexible and adaptive in unpredictable situations, where robots alone would fail.

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

■ROMA TRE

15

February 11, 2021

February 11, 2021

Motivation: PA and Farming Future

Let us put together all the ingredients...

- Full autonomy would be hard (is possible at all) to achieve for highly dynamic outdoor environments such as for the PA of permanent crops
- An integrated system where farmworkers can safely collaborate with multirobot systems will facilitate the **acceptance** and **usability** of the technology
- Efficient and intuitive Human-Robot interaction (HRI) along with Human-Robot Collaboration (HRC) skills are mandatory

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Vision

February 11, 2021

17

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

CANOPIES aims to develop novel human-robot interactions (HRI), human-robot collaboration (HRC) and multi-robot coordination (MRC) methodologies for implementing an effective collaborative paradiam between human workers and multi-robot teams in Precision Agriculture systems.

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

18

ROMA TRE

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

We envision a PA setting where **farmworkers interact** with **two** different **kinds** of **robot platforms**:

- <u>a farming robot</u> (F-R): dedicated to the execution of agronomic tasks such as harvesting the fruits or pruning the vines;
- <u>a logistics robot</u> (L-R): dedicated to the execution of logistics tasks such as the transportation of boxes of harvested grapes or removed branches.

19

Vision

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

- F-R is equipped with two arms for executing agronomic tasks in a humanlike manner and small loading bay for exchanging boxes (F-R BEM)
- L-R is equipped with a large loading bay for exchanging boxes (L-R BEM)

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

<u>Tight collaboration</u> between human workers and farming robots:

- Each **farmworker** interacts with a **small team of robots** to **supervise** and **facilitate** robot activities and help with agronomic or robotic tasks.
- The human operator may:
 - **improve** agronomic task execution: e.g., during the harvesting operation by removing single ruined fruits belonging to clusters to be harvested;
 - **assist** the farming platform: e.g., with the harvest by cutting any harvestquality bunch of fruits which the robot fails to detect or cannot cut;

The property of the first sector of the first	
February 11, 2021	Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

21

21

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

Tight cooperation between farming robots and logistic robots:

- L-R side: scheduling the **provision** of services in such a way to **minimize** the occurrence of any **peak of inactivity** for the F-Rs
- F-R side: scheduling the **request** of services in such a way to **minimize** the occurrence of any **peak of requests** for the L-Rs.

Case Study

Table-Grape Vineyard

- Produced for direct consumption while fresh
- Extreme care is required due to
 - the **fragility** of the table-grape
 - the long productive life of the vine

23

February 11, 2021

Pergola Training System

Overhead shade structure usually supported with some form of columns

- Vines are trained on this overhead structure so that the fruit develops under the canopy
- In this way fruits are
 - easy to reach
 - protected from sunburn

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

A CONTRACTOR

Case Study

Agronomic Interventions

Task		Human		Robot	
Harvesting	ŀ	Identification of clusters	•	Localization of ripe, top quality clusters and	100 miles 100 miles 100 miles
(July-	ŀ	Assurance of quality control		particularly the peduncle	States all
September)	ŀ	Proper management of harvested clusters	•	Generating movements to detect position of clusters	
	ŀ	Human positioning for optimal cutting process	ŀ	Identification of good quality clusters through image evaluation (colour, shape, size)	
	ŀ	Logistic organization in field	•	Precise positioning of cutting devices	Contraction of the second second
	ŀ	Searching for clusters hidden behind	•	Location of optimal cutting position for multiple	
		leaves		clusters at the same location	
	ŀ	Confirming a suggested cutting point	•	Accurate management of clusters to avoid damage	
			•	Careful box-filling process	Constanting and a second second
Pruning	ŀ	Define optimal position of selected buds	•	Identify branches to be removed and cutting site	
(December-		allowed to become grape clusters	•	Optimal placement of cutting devices	
January)	•	Identify optimal cutting point for branches	•	Removing process rejected buds	and the second
		to be removed	•	Identification of optimal distance between remained	
	•	Evaluate the average number of remaining		buds	
		branches in the managed zone			
C) magning		by the device 2001 Personal Programme			

the decision 2020 Precisionals Program

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

25

25

Objectives

Three Macro Objectives

- 1. Human-Robot Interaction
- 2. Human-Robot Collaboration and Multi-Robot Coordination
- 3. PA Integrated System

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Objectives

Objective-1: Human-Robot Interaction (HRI)

- Develop novel perception and collaborative techniques to promote and facilitate the **interaction** between the human workers and the robotic platforms
- Four Specific Objectives are identified:
 - Safe HRI in shared outdoor workspaces both with and without physical interaction

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

- Predicting future positions of human torso and arms in motion
- Efficient communication between robots and humans
- Enable both parties to be fully aware of each other intentions

Objectives

February 11, 2021

27

Objective-2: Human-Robot Collaboration (HRC) and Multi-Robot Coordination (MRC)

- Development of techniques and control strategies for collaborative implementation of agronomic operations
- Four Specific Objectives are identified:
 - · Human-like bimanual robot manipulation leading to intuitive HRC
 - Successful robot programming using learning by demonstration (LbD)
 - Learning from unexpected events with human-in-the-loop
 - Multi-robot coordination for collaborative tasks

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

∎ROMA ∎TRE

27

February 11, 2021

Objectives

Objective-3: PA Integrated System

- Develop and implement the elements needed for a **physical demonstration** of the HRI, HRC, and MRC objectives in a permanent crops **piloting scenario**.
- Three Specific Objectives are identified:
 - Collaborative robots capable of carrying out the required agronomic tasks safely
 - · Simulated farming environments for algorithm prototyping
 - Table-Grape vineyard case-study implementation

 February 11, 2021
 Kickoff Meeting - Roma Tre University - [Andrea Gasparri]
 29

29

Implementation

Work Plan

WP	Wark Paskaga Titla	Lead Participant	Start	End
No	WORK Package Title	Short Name	Month	month
1	Project Management	UNIROMA3	M1	M48
2	Functional Specifications	AGRIMESSINA	M1	M10
3	Robot Platforms Development,	DTI	M3	M40
	Integration and lesting			
4	Agronomic-Oriented	UPC	M3	M30
	Perception	010		
5	Single Robot Functionalities	UNICLAM	M5	M36
6	Human-Robot Interaction	UNIROMA1	M6	M36
7	Multi-Robot Coordination	UNIROMA3	M8	M42
8	Task Planning for Human-	1/711	M7	M42
	Multi-Robot Systems	KIH		
9	Architecture		M16	M48
	Field Validation	UNIKUWAI		
10	Dissemination and Promotion		M1	M48
	of the Exploitation	UPC		
100				

February 11, 2021

NDP

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

ΠP

Milestones

Milestone Number	Description	Related WP(s)	Due date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP [3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4
and the second se				

February 11, 2021

Implementation

Common Development Platform

- To reduce the risk of compatibility issues and speed up the integration process
- Promote the interaction between partners and facilitate interaction between robot components
- Facilitate intermediate algorithm validation during the development stage
- A set of **best practices** and **guidelines** to produce code and documentation must be discussed

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

Imp	ementation

Assessment

February 11, 2021

34

February 11, 2021

33

- Hardware and software components will be tested before each operational period, i.e., in **June** before harvesting and in **November** before pruning.
- Each robotic prototype will go through full testing and safety assessment under laboratory conditions at DTI (Factory Assessment Test - FAT).
- During the integration weeks, all changes will be evaluated in in-field testing before the in-field validations (Site Acceptance Test - SAT).

33

ROMA ∎TRE

February 11, 2021

Implementation

Integration Weeks (IWs)

- Full weeks during which partners will work together to integrate the developed components and check for potential issues.
- Four IWs are envisioned over the project duration:
 - One at the second year before harvesting season,
 - Two at the third year before harvesting and pruning seasons,

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

- One at the fourth year before the final demo
- IWs costs have been included in the budget of each Partner.

Implementation

February 11, 2021

35

Piloting at "Cooperativa Agricola Corsira"

- A community of about 20 small producers in the municipality of Aprilia, Lazio, Italy
- Vineyards trained on a pergola trellis system
- Planting Pattern: 2,60 x 2,60 m
- Height: 1,85 1,95 m
- Varieties: Vittoria, Matilde, Pizzutello

ROMA ∎TRE

35

37

CANOPIES LOGO

February 11, 2021

Kickoff Meeting – PAL Robotics- [Delia Garcia]

CANOPIES LOGO

COLOR PALETTE

OPTIMAL COMBINATION

Kickoff Meeting – PAL Robotics- [Delia Garcia]

39

PAL ROBOTICS

CANOPIES LOGO

LOGOTYPE

Kickoff Meeting – PAL Robotics- [Delia Garcia]

Thanks for your attention!!!

41

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri]

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP1 - Project Management

Objectives

- Objective 1 Coordination of the technical and scientific activities (UNIROMA3)
- Objective 2 Coordination of the reporting and management actions required by the H2020 procedures (RSA)

Tasks Description

Task 1.1 – Technical and Scientific Coordination [M1-M48]

(Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	6	1	1	1	0	0	1	1	0	0

Task 1.2 – Management [M1-M48]

(Leader:	RSA)
----------	------

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	0	0	0	0	0	0	0	0	36
$\langle \rangle$	ampert's funded by the margar 2000 Processed In Despect Doors under Kind Agriculture (Sector	- Programme Disadite								
11 February 2	021		Kickoff Meeting - Ro	ma Tre Unive	ersity [Andrea Gasn	arril - RSA -	Alessandro Albino Fr	977a]		

Task 1.3 – Risk Assessment [M1-M48]

(Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	6	1	1	0	2	2	0	0	1	0

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

ROMA TRE

5

Deliverables

D1.1: Project Management Guidelines	Leader: RSA	M1							
It comprises the guidelines for all partners on the procedures to be followed for fully complying with the EC procedures on scientific, technical and financial reporting									
D1.2: KoM Report	Leader: RSA	Delivery Month:	M1						
It collects the outcome of the kick-off meeting.									
D1.3: Monitoring on the Use of the Resources (UoR)	Leader: RSA	Delivery Month:	M6-M12-M24- M36-M42						
It tracks the UOR and provides updates on the reshaping of the GANTT chart and of the effort distribution by the partners.									
D1.4: Risk Assessment and Contingency Plan	Leader: UNIROMA3	Delivery Month:	M4						
It provides the plan for the constant monitoring of proper su	unchronization of the partners cont	ributions and of the	project activities so to						

It provides the plan for the constant monitoring of proper synchronization of the partners contributions and of the project activities so to respect the project timeline and to assess actual risk and anticipate future criticalities.

11 February, 2021

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

Risk Assessment – Goal and Main Actions

Goal:

11 February, 2021

7

- Identification of the challenges of the research activates
- Identification of the challenges of the implementation process

Main Actions:

- Definition of a set of performance and qualitative metrics and standards
- Constant monitoring for a prompt detection of relevant future criticalities
- Timely proposition of adequate countermeasures and mitigation actions

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

Risk Assessment – Risks Taxonomy

Risks Taxonomy

Five different kind of risks were identified at proposal time:

- Safety Risks (human-robot interaction, ...)
- Technological Risks (HW/SW components integration, ...)
- Experimental Risks (development delays vs. vegetative seasons, ...)
- **Research** Risks (computation, communication, VR environment, ...)
- Management, Dissemination and IPR Risks (performances, visibility, ...)

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

ROMA

T1.2 main actions and expected outputs

- Support the CO to run the overall management of the Project.
- Support the Project Management Committee (PMC).
- Keep track of the budget through the monitoring of the Use of the Resources (UoR) on a regular basis.
- Support the CO as additional point of contact with the EC for any contractual matter; covering of reporting periods, submission of deliverables, etc..
- Support the CO in organizing all periodic meetings to be held among partners on a regular basis.

- Deliverable D1.1 Project Management Guidelines
- Deliverable D1.2 KoM Report
- Deliverable D1.3 Monitoring of the UoR @ M06 (!)

(!) Additional monitoring of UoR: M12, M24,M30, M42

11 February, 2021

g

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

9

D1.1 Project management guidelines

□ Scope:

- > To complement the existing binding project documentation including GA and CA.
- To set and clarify the procedures to be followed within CANOPIES to ease its smooth implementation.
- To be considered as a live document; some sections may be updated over the time based on the decision of the PMC

Content:

- Governance
- Financial management
- ➢ Periodic Reporting
- ➤ Monitoring of UoR
- ➢ Project documents
- ➤ Deliverables

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

(!) PMC Members to be appointed at КоМ

Governing and decisional structure

- □ Project Management Committee (PMC) is chaired by the CO. It is composed by one representative of each beneficiary. Each beneficiary shall nominate a senior representative with budget responsibility, enabling to take consistent decisions and to represent the beneficiary's' interests. The PMC will be empowered to make decisions affecting the budget and the objectives of the project.
- Work Package Leaders (WPLs) are responsible for the proper and timely performance of the respective work packages according the work plan and the objectives of the project. Each WPL is responsible for the progress control and the successful completion of the work package as well as timely delivery of project milestones and deliverables.
- Project Manager (PM) This role is assigned to partner # 10 RSA. The PM will fully support the CO in the interaction with the EC and the Consortium to supervise the financial and administrative progress of the project and to coordinate and ensure a constant and timely communication among the beneficiaries.

11 February, 2021

11

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

RSA 11

Financial management

	(EURO)					
	Total costs	Max EC Grant amount	Prefinancing amount	Guarantee Fund (5%)	Actual prefinancing	
	6.904.940,00	6.904.940,00	3.682.634,67	345.247,00	3.337.387,67	
#	Beneficiary	Project costs (GA)	Max EC Grant amount	Project share	Prefinancing amount	
1	UNIROMA3	910.960,00	910.960,00	13,19%	440.297,33	
2	KTH	883.125,00	883.125,00	12,79%	426.843,75	
3	UNIROMA1	741.888,75	741.888,75	10,74%	358.579,56	
4	UPC *	765.830,00	765.830,00	11,09%	370.151,17	
5	UNICLAM	739.375,00	739.375,00	10,71%	357.364,58	
6	DTI	886.198,75	886.198,75	12,83%	428.329,40	
7	PALEBLUE	797.812,50	797.812,50	11,55%	385.609,38	
8	PALROBOTICS	847.500,00	847.500,00	12,27%	409.625,00	
9	AGRIMESSINA	132.500,00	132.500,00	1,92%	64.041,67	
10	RSA	199.750,00	199.750,00	2,89%	96.545,83	
	τοται	6 904 940 00	6 904 940 00	1.00	3 337 387 67	

* including third party CSIC

The following are the payments made/to be made by the EC (GA Art. 21.1):

- One pre-financing payment: processed by the EC and the CO (03/02/2021)
- Two interim payments (GA Art. 21.3) made within 90 days from receiving the periodic reports at the end of P1 and P2. The total amount of pre-financing and interim payments must not exceed 90% of the maximum grant amount set out in art. 5.1 of the GA.
- One payment of the balance (GA Art. 21.4) reimbursing the remaining part of the eligible costs incurred by the beneficiaries. At the payment of the balance, the amount retained for the Guarantee Fund will be released.

Periodic reporting

CANOPIES is divided into **3 reporting** periods covering M1-18 (RP1) M19-36 (RP2) and M37-M48 (RP3) plus the **final reporting**. The CO must submit a Periodic Report within 60 days following the end on each reporting period.

The **periodic report** must include the following: a periodic **technical report** a periodic **financial report**, containing the **individual financial statements (FS)**

Technical Report

Each Beneficiary must provide in good time the data needed for the technical reports. Contributions are expected from all partners monitored through the WPLs. Revisions, if required for the report's final acceptance, are managed by the CO.

Financial report: the CO and the PM will provide support/supervision:

- by informing about required documents;
- by clarifying how to enter figures into SyGMa;
- and by reviewing the cost explanations for consistency and completeness.

Beneficiaries will autonomously enter their financial information into SyGMa, electronically sign the FS and submit them to the CO.

11 February, 2021

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

Monitoring of the UoR and related costs

- □ The allocation of resources is controlled on a half-year basis by the CO supported by the PM. First results of this monitoring exercise are to be included in Deliverable D1.3.
- □ The additional six-months- based assessments shall be carried out (at M12 M24 M30 M42) for internal purposes.
- Beneficiaries will be asked to report the distribution of their Person Months; data will be reviewed by the CO, supported by the PM, mainly to verify whether the efforts are consistent with those planned in the Annex I and reflect the actual flowing of the project according to the active GANTT.
- □ This data collection will allow the CO to track the manpower allocation per partner throughout the project and therefore will provide a detailed summary of **planned versus actual** Person Months deployed for mere internal controlling purposes.
- □ Each beneficiary will also be asked to **justify any major overuse/underuse** of Person Months to make sure that the deviations from the planned scheme will not result in an overall delay of the project or otherwise jeopardize the project's objectives.

$\langle \rangle$	The angest's bound by the network 2000 Presenant Programm (PPR-boundary Down and Vision Agreement the 2000 Mark
11 February	2021

Project documents: preparation & approval chain

Type of document	Prepared by	Approved by
Deliverables	TS	WPL - RW - CO
Technical notes	TS	WPL - RW - CO
Coordination memos	CO - PM	со
Minutes of meetings	WPL (WP meetings) - CO/PM	WPL - CO - BEN

TS: Technical Staff MS: Mamagement staff CO: Coordinator WPL: Work Package Leaders RW: Internal rewievers

PM: Project Manager

 A set of general templates for the deliverables and internal/external presentations has been prepared by the CO and will be made available to all beneficiaries. During CANOPIES' implementation, a wide range of documents will be widely used, either for internal use, for reporting to the EC or for dissemination and exploitation purposes.

10	The amplet's funded by the metalar 2000 Processed Programme (Physical Sciences Processed Processed For 2000 Meth
11 February	, 2021

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

RSA 15

Deliverables 1/3

- □ The project's workplan includes 10 Work Packages and 37 deliverables. One additional WP (WP11) and 4 deliverables have been generated by the EC to comply with the H2020 Ethics Requirements.
- □ Main authors and internal reviewers of the <u>technical deliverables</u> to be submitted in the first 12 months of the project, will be identified by the CO and the WPL following the technical discussion to be held during the KoM meeting. Adjustments, if needed, will be adopted during project implementation.
- Authors and reviewers for the additional technical deliverables will be identified on a yearly basis. There will be at least one internal reviewer per deliverable.
- □ D1.1 and D1.2 will be reviewed and approved by the CO before the submission. The CO has already agreed with the PO the delay of the submission of D1.1 and D1.2 by M2. The same applies to D1.3
- □ As indicative internal work schedule for the timely production of the deliverables, some 6 weeks will be devoted to the preparation of the deliverables; in addition, 1 week/10 days will be dedicated to the internal review. Timing is subject to variations according to the complexity of the deliverables themselves.

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

Deliverables 2/3

Each technical deliverable (Report) should respect the following customary structure:

- ◆ Executive Summary a brief summary of the key points of the main document
- Table of Content
- Abbreviations and Acronyms
- ◆ Introduction an outline of the aims and objectives of the deliverable and where it fits in the context of the CANOPIES project.
- ◆ Main body of the report this section will explain the task that was carried out and the results generated and illustrate the technical and scientific progress made within the task.
- Conclusions summarizing the major outputs of the deliverable and the implications of the results on other parts of the project or the impact on that the results will have for the CANOPIES stakeholders and targeted users' community. The conclusions should also highlight the deficiencies in the work carried out and where future improvements or further work should be directed.
- References
- This is the proposed structure to correctly encode the deliverables and Annexes
 - facilitate their tracking and storage:

Due dates

[CANOPIES]-WPX_D.X.x_V.X.x_[DRAFT/FINAL/SUBMITTED] _YYYMMDD

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

RSA 17

	Feb-21	M2	D10.1						UPC			
Dalivarables 2/2	Mar-21	M3	D10.3	D11.1					UPC	UNIROMA3		
טפוועפרמטופל לעל	Apr-21	M4	D1.4	D2.1					UNIROMA3	AGRIMESSINA		
	May-21	M5										
	Jun-21	M6	D1.3	D2.2	D10.2	D11.2	D11.3	D11.4	RSA	DTI	UPC	UNIROMA3
	Jul-21	M7										
	Aug-21	M8	D3.4						PALEBLUE			
	Sep-21	M9										
	Oct-21	M10	D2.3	D2.4	D3.1				UNIROMA3	PALEBLUE	DTI	
	Nov-21	M11										
	Dec-21	M12	D4.3	UoR					PALEBLUE	RSA		
	Jan-22	M13										
	Feb-22	M14	D3.2						DTI			
	Mar-22	M15	D5.4						PALEBLUE			
	Apr-22	M16										
	May-22	M17										
	Jun-22	M18	D6.4						PALEBLUE			
	Jul-22	M19										
	Aug-22	M20	D7.1						UNIROMA3			
	Sep-22	IVI21	07.0						041501115			
	New 22	NI22	D7.3						PALEBLUE			
	NOV-22	1012.5	HeB						DCA			
	Jan-22	M25	DR 4						PALERI LIE			
	Seb.22	M26	D5.1						LINICLAM			
	Mar-23	M27	03.1						Unicerin			
	Apr-22	M28										
	May-23	M29										
	lun-23	M30	D4.1	D4.2	D6.2	UoR			UPC	UNIROMA1	RSA	
	Jul-23	M31										
	Aug.22	M22	D5.2						UNICLAM			
	Sen-23	M33	D9.1						DTI			
	Oct-23	M34										
	Nov-23	M35										
	Dec-23	M36	D5.3	D6.1	D6.3	D8.2			UNICLAM	UNIROMA1	KTH	
	Jan-24	M37										
	Feb-24	M38										
	Mar-24	M39										
	Apr-24	M40	D3.3						DTI			
	May-24	M41										
	Jun-24	M42	D7.2	D8.1	D8.3	D9.2	D9.3	UoR	UNIROMA3	KTH	UPC	RSA
	Jul-24	M43										
	Aug-24	M44										
	Sep-24	M45										
15 2 L	Oct-24	M46										
6 a 4 Minute part is housed by the during 2000 Presentation Programme	Nov-24	M47										
of the furthered Chose under Start dependent for Truthered	Dec 24	8440	D0.4		1	1	1	1	LINIDOMAN	1		

11 February, 2021

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

Project Management Guidelines

The Project Management Guidelines (D1.1) are intended to be a quick reference guide complementing the Grant Agreement and the Consortium Agreement.

Further guidelines may also be found on the EC Participant Portal within the H2020 Online Manual:

https://ec.europa.eu/research/participants/docs/h2020-funding-guide/index_en.htm

If further assistance or advice is required, please contact:

- CO Prof. Andrea GASPARRI andrea.gasparri@uniroma3.it
- PM Dr. Alessandro ALBINO FREZZA <u>alex22663@gmail.com;</u>

19

20

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

Technical Discussion (Management Structure)

1. Project Management Committee (PMC)

• Partner Representative Appointment

2. Work Package Leaders (WPLs)

• Partner Representative Appointment for the Leadership of each WP

N.B.: Each WP Leader is responsible for the appointment of the Partner Representative of each Task Leader. This information should then be shared with the PI and the PM.

The unique is to be and by the decise 2000 Presented Programmer The unique is the unique is the decise 2000 Presented Programmer	
1 February, 2021	Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

RSA

Let's move on to the next WP...

Any questions

11 February, 2021

Kickoff Meeting - Roma Tre University [Andrea Gasparri] - RSA - [Alessandro Albino Frezza]

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP2 – Functional Specifications

Objectives

- Objective 1 Best practice & functional specifications analysis;
- Objective 2 Functional requirements & benchmarking;
- Objective 3 Define table grapes scenario for final validation;
- Objective 4 ELS issues (Ethical, Legal and Societal).

February 11, 2021

2

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

Task 2.1 – Representative Agronomic Activities: Requirements, Specifications and Performance Indexes [M1-M6]

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	1	0	0,5	1,5	0	0	0	0	2	0

Task 2.2 – Specification of Basic Robotic Elements and their Functionalities [M1-M6]

(Leader: DTI)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	1	1	0	0	1	3	0	2	1	0
$\langle \rangle$	angan's builded by the marster 2000 Procession In Surgary Local and the Del Agreement Ba 10	h Pingi selemi Di selem								Cogril
February 11, 2	021		Kickoff Meet	Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]						

3

Tasks Description

Task 2.3 – Human-Robot Collaboration Specifications [M3-M8]

(Leader: UPC)

(Leader: UNIROMA1)

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	1	0	1,5	1	0	0	1	1	0

Task 2.4 – Human-Robot Communication Specifications [M3-M8]

	•	-,									
Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA	
РМ	0	1	2	0	0	1	0	1	1	0	
$\langle \rangle$	ngert's basiled by the derivate 2020 Personaldy Sumgard Down under Start Agricented No. 120	Programme								Cogril	
bruary 11, 20	021		Kickoff Meet	Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]							

Task 2.5 – Dimensioning of Real-World Scenarios for Periodic Field Testing and Final Demo [M6-M10] (Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	1	1	0,5	1	1	3	0	1	2	0

Task 2.6 – Virtual Reality Farming Environment Specifications [M1-M10]

(Leader: PALEBLUE)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	1	0	1	0	1	1	3	0	1	0
The address handle is the decise 2000 research frequences of the local control of the decise 2000 research frequences of the local control of the decise 2000 research frequences										Cogril
ebruary 11, 2	021		Kickoff Meet	Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]						

Deliverables			HUMPA POBOT COLLARS
D2.1: Requirements, Specifications and Benchmarks	Leader: AGRIMESSINA	Delivery Month:	M4
Requirements and Specifications definition. Identification of	performance indices		
D2.2: Specifications and KPIs for the two robot prototypes	Leader: DTI	Delivery Month:	M6
Definition of report for monitoring KPIs and robot specification	ons		
D2.3: Dimensioning of the Real-World Scenario for Final Demo	Leader: UNIROMA1	Delivery Month:	M10
Description and dimensioning of table-grape vineyard and all	I the agronomic operations		
D2.4: VR Farming Environment Specifications	Leader: PALEBLUE	Delivery Month:	M10
Description of the Specifications to the Virtual Reality Environ	nment		
The analysis based by the based BIII Presented Programme Device and the control of the analysis of the BIII Presented Programme			CogriMessing
February 11, 2021 Kickoff Meeting – Agrimes	sina - [Francesco Messina – Giuseppe Valenzano]		6

Milestones

# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Requirements, Specifications and Benchmarks
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP[3,4,5,6,7,8]	M25	Deliverable D3.4, D4.3, D5.4, D6.4, D7.3, D8.4
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

February 11, 2021

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

ogriMessino 7

7

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

Technical Discussion – Agronomic aspects

Soil: Very heterogenous. Mostly medium texture with a rich calcareous component. (Other type of soil clayey, sandy, silty);

Spacing: commonly 2.7 m x 2.5 m (range 2.4x2.4 – 3.0x3.0);

Planting density: from 1.100 to 2.000 vines per hectare;

Grapes distance from the ground: commonly 1.8 m; (range 1.5 and 2.0 m)


```
February 11, 2021
```

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

ogri Messino

9

Technical Discussion – Agronomic aspects

Yield per hectare: generally 30 tons (range 20 – 40 tons)

Bunch weight: 800 g; (range 400 g - 1500 g)

Canopy management for harvesting: all the leafs should be above the bunches allowing all bunches to have a "free space" without touching each other.

CogriMessino

February 11, 2021

Ø

Technical Discussion – Agronomic aspects

Vine training systems:

- "Tendone/Pergola" the most used in Italy and Spain, is a pergola with a closed horizontal roof, 2.0 m from the ground and with crossed practicability;
- "Y" system (gable) is a lower structure with Y shape largely used in California, South Africa, Australia.

February 11, 2021

11

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

Technical Discussion – Harvesting

Canopy adjustment: collection and recognition of bunches; Fruit selection: removal of bunches not suitable for

sale / thinning;

Supervision and management: quality control;

Bunch placing: adjustment of the bunches in the box;

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

R Н

0 U

Т Ν

M B Α 0

Technical Discussion – Pruning

Targets

- o Plant Containment plant must remain within certain dimensions, parametrized to specific variety, age of the vineyard, planting distance;
- Productive balance each branch must have a specific number of buds;

Parameters

- Year of production
- o Variety
- Number of branches/canes
- Number of buds per branch (branch length)
- Promote the lymphatic flow

February 11, 2021

Cane #4

Technical Discussion – Experimental Site

Soil: Sandy

Spacing: 2.6 m x 2.6 m Planting density: 1.480 plants/hectare Grapes distance from the ground: 1.8 m Yield per hectare: 30 tons/hectare Clusters per plant: 30 bunches/plant Bunch weight: 800 g (range 400 g – 1500 g) Varieties: Vittoria, Matilde, Pizzutello, Italia Vine training system: Pergola/Tendone Soil management: Tillage (20 cm)

Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]

Corsira Soc. Coop Agricola Via Corsira, 04011 Aprilia RM

griMessino

Critical Activities - Sensors Identification

Critical Activities – Sensors identification

Refractometer that allow non-invasive measurement:

ATAGO PAL-HIKARi 2

Brix can be measured by placing the fruit on the sample stage It requires no more cumbersome wiping and cleansing after each measurement. Measurement Time 4 seconds

SCiO

Near Infrared Spectrometer miniaturized. Patented optical head is just a few millimeters in size. Low power consumption and zero warm up time make it highly responsive and efficient.

The ampert is found by the merger 2020 Press of the foundation of the foundation of the foundation of the foundation of the

February 11, 2021

Kickoff Meeting - Agrimessina - [Francesco Messina - Giuseppe Valenzano]

• Objective 2.6 – Virtual Reality Farming Environment Specifications

PaleBlue: Technical Goals

- Identify requirements for VT environment.
- Identify environment elements, dynamic object and interaction actors for 3D modelling.
- Identify actors and real time interaction.
- Decision between Standalone and PC-based hardware setup.

PaleBlue: Technical Challenges

• None at the moment.

Kickoff Meeting – PaleBlue – [Feliks Gorbatsevich]

PaleBlue

19

19

PaleBlue: Technical Discussion

• None at the moment.

20

February 11, 2021

- The leading unit of each task is responsible for its timely completion
- The leading unit of each task is responsible for the drafting of the related deliverable (all involved units must contribute)
- The leading unit of the WP is responsible for communicating with the PI in the case of difficulties

The paper is the second state of the second st		Cogri Messinp
February 11, 2021	Kickoff Meeting – Agrimessina - [Francesco Messina – Giuseppe Valenzano]	21
21		

Let's move on the next WP

22

ogriMessino

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP3 - Robot Platforms Development, Integration and Testing

1

Robot Platforms Development, Integration and Testing

4

3

Overall Goal

- Design and implement two robotic prototypes required to carry out the research activities.
- Develop or integrate all required hardware, i.e., perceptual system, boxexchange-mechanism, dual arm setup, etc.
- Develop or integrate all required software, i.e., drivers, ROS interface with all components, overall software architecture, etc.
- Develop a VR/robotics simulator that represents the farming environment.

The analysis funder by the Annual Research Programmer The Annual Science Process and Proceedings of the Science Process		DANISH TECHNOLOGICAL
February 11,2021	Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]	3

- Objective 1 Robot prototype localization and autonomous navigation.
- Objective 2 Integration/development of robotic components.
- Objective 3 Integration/development of required in-field infrastructure.
- Objective 4 Integration/development of core simulation and VR interaction.
- Objective 5 Continuous acceptance testing and integration phases.

Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]

DANISH TECHNOLOG

Task 3.1 – Robot Hardware Customization and Periodic System Integration [M3-M40]

(Leader: DTI)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	1	0	0	2	0	10	0	8	0	0

- First integration phase developing the two robot prototypes and accompanying infrastructure, i.e., local wireless network, GPS base, etc.
- Second integration phase of the dual arm and gripper prototypes.
- Third integration phase of the Box-Exchange-Mechanism in both robot prototypes.
- Revisions based on what we learned during the project and in the field (T3.6 and WP9)

9

Task 3.2 – Agronomic Dual Arms System with Actuated Torso Design and Development [M3-M40]

(Leader: PAL)

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	0	0	0	2	0	0	12	0	0
 Starting from the upper body of the TIAGo++ 										

• Integration of torque sensors and brakes in at least the first 4 joints of the arms

- **F/T sensor** between the end-effector and the arm end-tip
- Migration from CAN to **EtherCAT** to have higher control bandwidth
- Add the **rotating DoF** in the base of the upper body
- Investigate increase of IP rating for dust and water protection
- Expose a hardware abstraction layer with open interfaces for the mid-level control
- Integration with vehicle Alitrak DCT-350P

10

February 11, 2021

Kickoff Meeting - PAL Robotics

Task 3.3 – Design and Development of Agronomic End-Effectors [M8-M30]

(Leader: PAL)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	0	0	0	1	0	0	12	1	0

- Agronomic end-effectors design for harvesting and pruning
- o PAL would investigate if a single robust new end-effector can do the above functions by adding tools
- Requirements about the tasks that the end-effector has to do with the tools [Agronomic experts feedback needed]

The angles is build by the finance USE Processed Programmer of the language is build by the finance of the course USE Processed Programmer		0
February 11, 2021	Kickoff Meeting - PAL Robotics	11

11

Tasks Description

Task 3.4 – Development of the Box-Exchange Mechanism(s) (BEM) [M4-M39]

(Leader: DTI)

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	0	0	0	0	4	0	0	0	0

- Creating BEM concepts for each robot prototype.
- Develop the concepts.
- Integrating the **sensory suite.**
- Develop the low-level control software.

Task 3.5 – Autonomous Navigation Functionalities [M4-M30]

(Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	12	0	4	0	0	10	0	0	0	0

- Develop low level control algorithms.
- Create basic navigation capabilities.
- Endow the mobile platform with autonomous navigation and localization functionalities.

13

Tasks Description

Task 3.6 – Acceptance Testing of Farming and Logistic Robotic Prototypes [M7-M40]

(Leader: DTI)

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	0	0	0	0	6	0	6	0	0

- · Periodic testing of the robot prototypes before the on-field testing.
- Factory acceptance test, performing test under lab conditions. (matching KPIs of lab testing)
- Site acceptance test, performed during integration weeks (matching KPIs of field testing)

February 11,2021

Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]

Task 3.7 – Simulated Environment and Basic Robotic Components[M3-M8]

(Leader: PALEBLUE)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	0	0	0	1	3	6	0	0	0

- Creating the basic table-grape farming VR/simulation environment.
- · Modelling the robotic prototypes in the VR/simulation environment
- · Modelling prototype mechanism, e.g., BEM, in the VR/simulation environment
- Developing interfaces between simulation environments and robotic software.

15

Deliverables

		81 F.U.S.				
D3.1: Guidelines for the Integration of System Components	Leader: DTI	Delivery Month: M10				
Robot and software architecture is complete and the guidelines for building compa	atible software and hardware	e is shared to all partners.				
D3.2: First Release of Farming and Logistic Robot Prototypes	Leader: DTI	Delivery Month: M14				
The robot prototypes passed the first acceptance tests, can perform the basic func	ctionalities and presented.					
D3.3: Final Release of Farming and Logistic Robot Prototypes	Leader: DTI	Delivery Month: M40				
The matured versions of robot prototypes which comply with all the final specifications are presented.						
D3.4: Simulated Farming Environment and Basic Robotic Components	Leader: PALEBLUE	Delivery Month: M8				

The first version of the developed simulation environment which allow the robotic simulation and VR interaction is presented.

February 11,2021

Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]

Milestones

				~07 COL 4
# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP[3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]

17

2

Critical Activities (next 12 Months)

- Hardware Specifications: Identify requirements of the targeted task.
- Sensors Selection: We need to identify all the sensors required for navigation.
- Hardware Purchases: To be carried out ASAP.
- <u>Software Architecture:</u> that serves all partners, with characteristics of easy versioning, distribution and provides basic functionalities for all components.
- <u>Robot Prototypes KPIs</u>: Propose and agree with the targeted robot capabilities.
- <u>Dual Arm and Gripper Concept Development</u>: Create the concept and development leading to the first prototype realized in M14.
- <u>BEM Concept Development</u>: Create the concept and development leading to the first prototype realized in M14.
- Simulator Development: First version by M8.

- Hardware integration: Choosing common HW, optimizing integration effort.
- **Dual arm initial concepts**: computational and power autonomy, gripper design, agronomic sensor positioning.
- **BEM initial concepts**: Approach tactics, task specifications, hardware specifications, docking hardware (if any).
- **Software development** : ROS / ROS2, multi-ros system, basic navigation stack, deployment, version control and release.

the angusts build by the Areas 200 Proceeding Projection of the course of the Areas 200 Proceeding Projection		DANESH TECHNOLOGICAX
February 11,2021	Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]	19

19

Technical Discussion

- Hardware integration: Choosing common HW, optimizing integration effort.
- **Dual arm initial concepts**: computational and power autonomy, gripper design, agronomic sensor positioning.
- **BEM initial concepts**: Approach tactics, task specifications, hardware specifications, docking hardware (if any).
- **Software development** : ROS / ROS2, multi-ros system, basic navigation stack, deployment, version control and release.

>

TIAGo++ overview

- II Height: 110cm 145cm
- 🗞 Expandable
- Mobile manipulation
- Free Tutorials and simulations available online
- 🖄 Research, Industry and Ambient Assisted Living
- **IROS** 100% Integrated

February 11, 2021

Kickoff Meeting - PAL Robotics

21

21

TIAGo++ specifications

- Base footprint: Ø 54 cm
- Weight: $\sim 90 \text{ kg}$
- Torso lift stroke: 350 mm
- 7 DoFs each arm
- Optional 6-axis F/T sensors in the wrists
- Arm payload (without end-effector): 3 kg
- Arm reach: 87 cm
- 2x Li-Ion 36 V 20 Ah 2C batteries ٠
- Average power consumption: 250 W ٠

Kickoff Meeting - PAL Robotics

Technical Discussion

- Hardware integration: Choosing common HW, optimizing integration effort.
- Dual arm initial concepts: computational and power autonomy, gripper design, agronomic sensor positioning.
- BEM initial concepts: Approach tactics, task specifications, hardware specifications, docking hardware (if any).
- Software development : ROS / ROS2, multi-ros system, basic navigation stack, deployment, version control and release.

Technical Discussion

- Hardware integration: Choosing common HW, optimizing integration effort.
- **Dual arm initial concepts**: computational and power autonomy, gripper design, agronomic sensor positioning.
- **BEM initial concepts**: Approach tactics, task specifications, hardware specifications, docking hardware (if any).
- **Software development** : ROS / ROS2, multi-ros system, basic navigation stack, deployment, version control and release.

Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]

• Objective 3.7 – Simulated Environment and Basic Robotic Components

February 11,2021

25

25

2

February 11.2021

Kickoff Meeting - Paleblue - [Felix Gorbatsevich]

28

PaleBlue : Technical Challenges

- Physical engine comparison and selection ٠
- Creation of graphical and physical model of the robot ٠
- Realism of physical behaviour
- Integration with ROS

27

٠

•	Robot simulation

- Modelling and creation of basic robotic components. ٠
- Kinematic model development of the mobile base. ٠
- Develop software for communication between ROS and the produced simulation.
- Modelling of BEM (Box-Exchange Mechanism) mechanism.
- in 3D environment.

Kickoff Meeting - Paleblue - [Felix Gorbatsevich]

PaleBlue : Technical Goals

PaleBlue

PaleBlue : Technical Discussion

- CAD data for robot
- Reference videos of robot motion & behaviour
- Protocols used in communication with ROS?

The angle of the local data of the former of the State of	
February 11,2021	Kickoff Meeting – Paleblue - [Felix Gorbatsevich]
29	

PaleBlue

29

Coordination and Planning of Activities

- Monthly meetings to measure the status of achievement of the WP
- Ad-hoc meetings to cope with potential issues during the prototype development
- The leading unit of each task is responsible for its timely completion
- The leading unit of each task is responsible for the drafting of the related deliverable (all involved units must contribute)
- The **leading unit** of the WP is responsible for **communicating with the PI** in the case of difficulties

The angle 1 can be dependent of the second state of the second sta	
February 11,2021	Kickoff

Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]

Let's move on to the next WP...

Any questions?

February 11,2021

DANISH TECHNOLOGICAL INSTITUTE

Kickoff Meeting – Danish Technological Institute - [Tsampikos Kounalakis, Lars Dalgaard]

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP4 - Agronomic-Oriented Perception

Agronomic-Oriented Perception

February 11, 2021

Kickoff Meeting - UPC- [Alberto Sanfeliu]

- Design new perception methods for modelling and detection of grapes, vineyard tree branches and other elements of the environment.
- Design algorithms to track the detected objects while the robot moves
- Design algorithms and systems to assess grape ripeness and quality
- Develop VR simulation tools and create a virtual environment for experiments

Kickoff	Meeting -	UPC-	[Alberto	Sanfeliu]
NICKUII	weeting -	UPC-	INDELLO	Samenuj

3

General Challenges

- Occlusions and self occlusions of leaves, branches and grapes
- Flexible and moving targets, due to environment (e.g. wind) and robot interaction
- Uneven lighting conditions, due to the weather and the trellis structure (frequent transitions from light to shadow)

Kickoff Meeting - UPC- [Alberto Sanfeliu]

Objectives

- Objective 1 Agronomic target detection and modelling
- Objective 2 Agronomic target localization
- Objective 3 Agronomic quality assessment
- Objective 4 VR agronomic-oriented perception


```
Kickoff Meeting - UPC- [Alberto Sanfeliu]
```


Tasks Description

Task 4.1 – Agronomic Target Detection and Modelling [M3-M30] (Leader: UPC)

Task 4.2 – Agronomic Target Localization [M3-M30] (Leader: UPC)

Task 4.3 – Agronomic Quality Assessment [M3-M30] (Leader: UNIROMA1)

Task 4.4 – VR Agronomic-Oriented Perception Component [M3-M30] (Leader: PALEBLUE)

February 11, 2021

Kickoff Meeting - UPC- [Alberto Sanfeliu]

the Average 2020 Pressmanh Programm

Tasks PMs

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	0	21	28	0	6	6	0	1	0

Kickoff Meeting - UPC- [Alberto Sanfeliu]]

February 11, 2021

Contraction Provide and a second seco

Kickoff Meeting - UPC- [Alberto Sanfeliu]

Milestones

# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS3	Final release of VR farming environment	WP4	M25	Software Released and Validated by a User Group

February 11, 2021

9

Kickoff Meeting - UPC- [Alberto Sanfeliu]

Objectives:

- Detect and model grapes
- Detect and model vineyard branches

Critical issues:

- Lighting and cast shadows
- Partial occlusions by leaves, branches,...
- Small artifacts

February 11, 2021

Object Detection

Semantic Seg

Instance Segmentation

Thiago T. Santos, Leonardo L. de Souza, Andreza A. dos Santos, Sandra Avila, Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association, Computers and Electronics in agriculture, Volume 170, 2020

Kickoff Meeting - UPC- [Alberto Sanfeliu , Antoni Grau, Edmundo Guerra]

Task 4.1 – Agronomic Target Detection and Modelling [M3-M30](Leader: UPC)

- Detection and tracking based on RGBD sensors to mitigate the effects of shadows
- Use of on-line learning and transfer learning to make it robust to different conditions
- Use of synthetic data generation to mitigate the lack of real data due to the specificity of the fruit and the seasonality

Rist, F.; Herzog, K.; Mack, J.; Richter, R.; Steinhage, V.; Töpfer, R. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation. *Sensors* **2018**, *18*, 763

11

February 11, 2021

Task 4.1 – Agronomic Target Detection and Modelling [M3-M30](Leader: UPC)

Kickoff Meeting - UPC- [Alberto Sanfeliu , Antoni Grau, Edmundo Guerra]

La Sapienza [Tomas Alessandro Ciarfuglia, Daniele Nardi]

• Methods:

- CNNs for grape detection
- CNNs for branch detection
- Computer vision techniques

February 11, 2021

Kickoff Meeting - UPC- [Alberto Sanfeliu , Antoni Grau, Edmundo Guerra]

Task 4.2 – Agronomic Target Localization [M3-M30] (Leader: UPC)

Objectives:

- Localize and track the grapes in 3D
- Localize and track the branches to be pruned in 3D

Critical issues:

- Lighting and cast shadows
- Partial occlusions
- Low density of point clouds

$\langle \rangle$	The angle of the first first first and the first state of the first st
February 11	, 2021

```
Kickoff Meeting - UPC- [Alberto Sanfeliu] – CSIC [Juan Andrade]
```


Front View: $I_{FR} \in \mathbb{R}^{H \times W \times W}$

Bird's Eye View: $I_{BE} \in \mathbb{R}^{H'}$

13

Task 4.2 – Agronomic Target Localization [M3-M30] (Leader: UPC)

Methods:

- CNNs of Lidar and stereo cameras
- Computer vision techniques

 $= \{q_1, \cdots, q_Q\}$

Kickoff Meeting - UPC- [Alberto Sanfeliu] – CSIC [Juan Andrade]

Task 4.3 – Agronomic Quality Assessment [M3-M30](Leader: UNIROMA1)

Both the **ripeness of the fruit** and the **external characteristics** contribute to the quality assessment task.

The robot has to pick the **right grapes at the right day** to collect the highest quality product.

This sub-task will use and advance the SotA of data driven fruit quality estimation.

Kickoff Meeting - La Sapienza [Tomas Alessandro Ciarfuglia, Daniele Nardi]

15

Task 4.3 – Agronomic Quality Assessment [M3-M30](Leader: UNIROMA1)

Proposed solution:

There is a vast literature of indexes based on radiation emission/absorption characteristics of plants that are currently used in agronomy for various tasks, such as ripeness estimation (e.g. NDVI, EVI).

While this **handcrafted indexes** are effective and well understood, recent developments of computer vision techniques show that for many problems it is possible to **learn more effective representation** by systematic experimentation thorough deep learning.

Sándor Lenk, Laury Chaerle, Erhard E. Pfündel, Gabriele Langsdorf, Dik Hagenbeek, Hartmut K. Lichtenthaler, Dominique Van Der Straeten, Claus Buschmann, Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications, Journal of Experimental Botany, Volume 58, Issue 4, March 2007, Pages 807–814

February 11, 2021

Kickoff Meeting - La Sapienza [Tomas Alessandro Ciarfuglia, Daniele Nardi]

Task 4.3 – Agronomic Quality Assessment [M3-M30](Leader: UNIROMA1)

Representation Learning for QA

Li, Shutao, et al. **Deep learning for hyperspectral image classification: An overview**. *IEEE Transactions on Geoscience and Remote Sensing* 57.9 (2019): 6690-6709.

17

Kickoff Meeting - La Sapienza [Tomas Alessandro Ciarfuglia, Daniele Nardi]

plants.

SAPIENZA 18

Task 4.3 – Agronomic Quality Assessment [M3-M30](Leader: UNIROMA1)

Specific Challenges

- The availability of data depends on seasons and weather. Collecting useful data in relevant quantity is a critical aspect.
- HW limitations: a low number of bands in multispectral cameras could limit the potential of the learning technique.
- High quality data annotation is always cumbersome.

Given a multi-spectral and multi-modal input, Deep Networks architectures could be able to find new representations

respect to grape quality.

potentially with more predictive power with

perform inferential analysis on the learned

At the same time it would be possible to

representations to gain insights on the physical and physiological properties of the

February 11, 2021

Kickoff Meeting - La Sapienza [Tomas Alessandro Ciarfuglia, Daniele Nardi]

Task 4.3 – Agronomic Quality Assessment [M3-M30](Leader: UNIROMA1)

Possible solutions

Use of transfer learning and domain adaptation from other variety of grapes, or depending on the task, other fruits.

- Data augmentation.
- Semi-supervised methods to reduce the amount of labelled data.

February 11, 2021

Kickoff Meeting - La Sapienza [Tomas Alessandro Ciarfuglia, Daniele Nardi]

Task 4.3 – Agronomic Quality Assessment [M3-M30](Leader: UNIROMA1)

Semi-supervised techniques

E. Bellocchio, T. A. Ciarfuglia, G. Costante and P. Valigi, Weakly Supervised Fruit Counting for Yield Estimation Using Spatial Consistency, in *IEEE Robotics and Automation Letters*, vol. 4, no. 3, pp. 2348-2355, July 2019 We know from our previous experience with other fruits, such as olives, that it is possible to train classifiers and regression networks using weak labeling (1-0 image labels).

The feature maps learned in this way, whose performance was proven on a complex task such as counting, have high probability of being very effective in detection and segmentation too.

February 11, 2021

Kickoff Meeting - La Sapienza [Tomas Alessandro Ciarfuglia, Daniele Nardi]

February 11, 2021

Kickoff Meeting - PaleBlue - [Felix Gorbatsevich]

Technical challenges:

- Grape virtual models
 - Physical model
 - Sensor-specific model(s)
- Implementation of specific sensors
- Integration using signal communication bus
- Visual model

Component [M3-M30](Leader: PALEBLUE) **Technical goals:**

- Virtual sensors & Virtual motors development.
- Run virtual experiments on virtual environment model.
- Sensor calibration on virtual environment model.
- Design and implementation of signal feeding to perception agents.

Kickoff Meeting - Kickoff Meeting - PaleBlue - [Felix Gorbatsevich]

Task 4.4 – VR Agronomic-Oriented Perception

- Testing of Point cloud.
- Testing 3D ray casting.

February 11, 2021

24

Task 4.4 – VR Agronomic-Oriented Perception Component [M3-M30](Leader: PALEBLUE)

Technical discussion:

- Sensors identified so far
- Signal communication bus/network

Kickoff Meeting - PaleBlue - [Felix Gorbatsevich]

February 11, 2021

23

- Sensors Selection: We need to have identified all the sensors and its robot pose. This work has to be done in WP2.
 - Sensors for detection of grapes and vineyard branches (RGB cameras, stereo cameras, Lidar,...)
 - Sensors for quality assessment of grapes (multi spectral camera)
 - Other sensors?
 - Sensors for VR
- Data collection:
 - Harvesting campaigns: 1rst on months August-September 2021; 2nd on months August-September 2022
 - Pruning campaigns: 1rst on months December 2021-January 2022; 2nd on months December 2022-January 2023.
- Data labelling:
 - After the data collection campaigns

1.1	This property is facilited by the mercial 2000 Procession Programm of Michael process critical lange and the 1010 SMM
February 11	. 2021

Kickoff Meeting - UPC- [Alberto Sanfeliu]

February 11, 2021

Coordination and Planning of Activities

- Monthly meetings to measure the status of achievement of the WP
- The leading unit of each task is responsible for its timely completion
- The leading unit of each task is responsible for the drafting of the related deliverable (all involved units must contribute)
- The leading unit of the WP is responsible for communicating with the PI in the case of difficulties

Kickoff Meeting - UPC- [Alberto Sanfeliu]

See.	This angest to builted by the mersion 2000 Precision Programmin (PPA: burges) Device under Start Agreement No. 12020-000
February 11	, 2021

Let's move on to the next WP.

	(
Anv	questions	$\left \right\rangle$
<i>·</i> · · · <i>y</i>	questions	Ö

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP5 – Single Robot Functionalities

Single Robot Functionalities

Farming robots

Two Farming robots for agronomic tasks (quality measurement, harvesting, pruning)

Dual-arm system mounted on a mobile base equipped by several sensors

Human-robot interaction capabilities at different levels

2

February 11, 2021

Kickoff Meeting – University of Cassino – [Alessandro Marino]

Overall Goal

February 11, 2021

3

- Design and develop basic arm motion functionalities for:
 - Grapes guality check
 - Harvesting and pruning
- Design and develop functionalities to interact both with humans and environment
- To setup a VR based environment to run human-in-the-loop simulations

• Objective 1 – To provide the farming robot with control strategies for the arms and the mobile base

Kickoff Meeting - University of Cassino - [Alessandro Marino]

- Objective 2 To provide to the arm human-like motions to increase the robot acceptability
- Objective 3 To account for the safety of the farmer during robot motion
- Objective 4 To allow farming robots to interact both with farmers and the environment by equipping them with advanced force control algorithms.
- Objective 5 To setup a VR environment to run realistic simulations

February 11, 2021

Work Package Description

WP5 – Single Robot Functionalities [M5-M36]

(Leader: UNICLAM)

Partner	UNIROMA3	КТН	UNIR	ом	IA1		U	PC		U	UNICLAM				DTI			PALEBLUE			e pal			L	AGRI				и.		RSA			۱ <u>ـــــــــــ</u>			Tot				
PM	2	6		0				2		46				0 6				3						1					0				66	;							
							Yea	r1								, Y	ear 2									Year	3									Yea	r4.			_	
				M1 M2	2 M3	M4 M5	MS	M7 M	8 149	M10 P	411 M	12 M13	M14	M15	M16 M	17 M1	6 M19	M20	M21 N	122 M2	M24	M25 N	126 MG	27 M21	M29	M30 7	431 M	32 M3	5 M34	M35	W36 N	(37 M	138 M3	9 M40	M41	M42	M43 N		45 M4	5 M47	M4
								Harve	sting		P	runing					Hai	rvestir	ng		Prui	ing					Harve	sting			Prunis	ng						Fine	al Den	10	
WP5 SINGLE ROB	OT FUNCTIONALITIES		UNICLAM																																						
T5.1 Two-Arms Co	ordination Functionalities		UNICLAM																																						
T5.2 Robot Safety	Functionalities		UNICLAM																																						
T5.3 Robot Physic	al Interaction Functionalities		UNICLAM																																						
T5.4 VR Mobile-R	obot Component		PALEBLUE																																						

February 11, 2021

5

Kickoff Meeting – University of Cassino – [Alessandro Marino]

6

Tasks Description

Task 5.1 – Two-Arms Coordination Functionalities [M5-M26]

(Leader: UNICLAM)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	2	2	0	0	16	0	0	1	1	0

Task 5.2 – Robot Safety Functionalities [M7-M32]

(Leader	: UNICLAM)									
Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	2	0	2	16	0	0	1	0	0
$\langle \rangle$	angert a funded by the design 2000 Periment	Programme								Ċ
February 11, 2	021		Kickof	t Meeting –	University of Cassin	o – [Alessan	dro Marino]			

Tasks Description

Task 5.3 – Physical Interaction Functionalities [M10-M36]

(Leader: UNICLAM)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	2	0	0	12	0	0	1	0	0

Task 5.4 – VR Mobile-Robot Component [M10-M15]

(Leader: PALEBLUE)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	0	0	0	2	0	6	0	0	0
$\langle \rangle$	migers is functioned by the Aurisian 2000 Procession for ingrave review and ar Viewet Agricement No 12	A Plagadowa								
ebruary 11, 2	021		Kickof	f Meeting –	University of Cassin	o – [Alessan	dro Marinol			

7

7

D5.3: Mobile arms physical interaction	Leader: UNICLAM	Delivery Month: M36
--	-----------------	---------------------

D5.4: VR Mobile-Robot Component Lea	eader: PALEBLUE	Delivery Month:	M15
-------------------------------------	-----------------	-----------------	-----

Robots and humans are able to interact and move in the Virtual Environment

February 11, 2021

8

Kickoff Meeting - University of Cassino - [Alessandro Marino]

Milestones

# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP[3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

February 11, 2021

9

Kickoff Meeting - University of Cassino - [Alessandro Marino]

NDP.

Technical Discussion – Overall system architecture

A *possible architecture*. The overall farming robot architecture might be based on a classical layered architecture

- The Perception Layer provides scene understanding
- The Task Layer provides trajectory planning for agronomic task execution and human-robot interaction
- The Arms *Motion Layer* receives agronomic significant trajectories from the Task Layer and generates motion commands for the arms
- The Safety Layer takes into account the presence of obstacles, in general, and human safety requirements, in particular
- The *Control Layer* is in charge of providing low level control loops

February 11, 2021

Kickoff Meeting – University of Cassino – [Alessandro Marino]

Technical Discussion – Task 5.1

Task 5.1- Two-Arms Coordination Functionalities. The idea is to endow the robot with motion primitives both for single and cooperating arms to be adopted for agronomic tasks and HRI

These primitive skills might be inspired by human manipulation; this feature influences how robots are perceived, and their motion predicted by human partners.

Concepts to be exploited:

- Elbow elevation angle (swivel angle)
- · Uni-modal bell-shaped hand velocity profile (smoothest movement)
- 2/3 Power Law (it relates tangential velocity and path curvature)
- Motion predictability (given a goal, motion meets human expectation) and legibility (given a trajectory the goal can be inferred)
- · Human-Path-Planarity in unconstrained movements
- Spatio-Temporal coordination (minimization of dissimilarity measures between human and robot arm joint configuration)

$\langle \rangle$	This, angust is founded by the during a 2000 Processed Programmer at the foundated Draws were fitted Againment for 2000 bits

February 11, 2021

Kickoff Meeting – University of Cassino – [Alessandro Marino]

11

Technical Discussion – Task 5.2

Task 5.2 - Robot Safety functionalities

- Human and robot sharing the same workspace during task execution
- Safety functionalities embedded in the robot architecture by exploiting RGB-D, lidars and hyperspectral cameras
- A possible approach exploits the definition of a safety field quantifying the level of the safety (several parameters to be considered)
- The robot trajectory parameters might be modified accordingly
- The estimate of the human motion and prediction of next action (WP6) will be taken into account for the assessment

$\langle \rangle$	The ansatz is involved by the memory 2000 Presenants Programmer (PPR-Sumpare December 2000 Agreement for 2000 Adm
February 11	. 2021

algorithms might be a viable solution

 Joint-Torque sensors will be exploited to estimate the human contact along the robot structure

Technical Discussion – Task 5.3

Task 5.3- Robot Physical Interaction Functionalities

Robots will interact both with humans and the

Variable impedance and direct force control

interaction with the environment

environment

February 11, 2021

13

Technical Discussion – Task 5.4

Task 5.4 - VR Mobile-Robot Component

- To allow to simulate in a realistic environment the robot motion and human-robot-interaction algorithms
- The robot perception will be modeled to include visual and range sensors (environment and human motion)
- A physical engine to generate, starting from VR world, interaction forces for control purposes
- The VR engine is connected to ROSX where the same algorithms used for simulation and real experiments are used for the robot motion in VR

Kickoff Meeting - University of Cassino - [Alessandro Marino]

February 11, 2021

Correlation with other WPs

Main WP5 objective. Endow the farming robot with motion functionalities driven by agronomic needs

WP5 is related to

- WP3 (platform design and development)
- WP4 (agronomic perception)
- WP7 (multi-robot coordination)
- WP8 (planning and learning)

Role and contribution of participants:

- UNICLAM will design and develop arm functionalities
- KTH will cooperate to the design of safety functionalities and learning of agronomic tasks
- UNIROMA3 will contribute to the arm-based motion coordination
- AGRIMESSINA will contribute with its agronomic knowledge
- PALEBLUE will model robot motion and perception in VR
- PAL will support for the access to the hardware layer

This amplit is fixed if by the theread 2000 Presmont Prog provide the special constant listed Agreement for 2000 M

February 11, 2021

15

Kickoff Meeting – University of Cassino – [Alessandro Marino]

NDP

Technical Discussion – Expected Inputs

Input						
From						
T2.3	Specifications concerning human-safety for agronomic operations					
T2.5	Specifications concerning the vineyard dimension					
ТЗ.2	Design and development of the agronomic dual-arm system					
Т3.3	Design and development of the agronomic end-effectors					
T4.2-4.3	Sensor motion requirements for agronomic target localization and quality assessment					
T6.1	Human body prediction					
T8.1	Manipulation skills learned from demonstration given by human coworkers					

February 11, 2021

Objective 5.4 – VR Mobile-Robot Component

February 11, 2021

PaleBlue: Objectives

 Manipulators Requirements: define robot requirements in terms of hardware and software, sensors equipment, payload, reachability and dexterous workspace.

Critical Activities (next 12 Months)

robots and the corresponding functionalities

- Farming Robot design: start designing the farming robot and prototyping motion algorithms in simulation environments
- Hardware Purchase: Mobile base already purchased. Other hardware already settled and orders ongoing (lidars, IMU, GPS)

Kickoff Meeting - University of Cassino - [Alessandro Marino]

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

Manipulators Functionalities: precisely define all tasks carried out by farming

February 11, 2021

PaleBlue: Technical Goals

• Virtual environment with Robot kinematic models to reproduce the robot motion as computed in ROS

Kickoff Meeting – PaleBlue – [Felix Gorbatsevich]

• Kinematic physic engine for real time interactions (Force, collisions, friction, etc.)

The amperia facility for the para 200 (17% factors and 100 million and 100 Aprox PaleBlue

19

February 11, 2021

19

PaleBlue

20

February 11, 2021

21

PaleBlue: Technical Goals

- Robot integration with ROS related to human safety aspects. ٠
- Sensor calibration on virtual environment model.
- Design and implementation of signal feeding to perception agents. ٠

PaleBlue: Technical Challenges

- Mechanisms for impact detection and measurement ٠
- Sensor calibration ٠

February 11, 2021

PaleBlue

21

NOP

PaleBlue: Technical Discussion

- Detection of humans
- Sensor types indentified so far
- Signal exchange channels

Kickoff Meeting – PaleBlue – [Felix Gorbatsevich]

23

23

February 11, 2021

Coordination and Planning of Activities

- The WP leader is responsible of monitoring all activities within the WP
- Monthly meetings to measure the status of achievement of the WP
- Additional meetings settled in case they are required
- The leading unit of each task is responsible for its timely completion
- The deliverable responsible oversees the correct drafting of the deliverable involving all units

Kickoff Meeting - University of Cassino - [Alessandro Ma	irino
--	-------

24

Monting University - Constant [4]

Let's move on to the next WP...

February 11, 2021

25

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP6 - Human-Robot Interaction

CAND

Human-Robot Interaction (HRI)

- Field of study dedicated to understanding, designing, and evaluating robotic systems for use by or with humans
- Interaction requires communication between robots and humans:
 - Remote interaction: the human and the robot are separated spatially or even temporally
 - **Proximate interaction**: the human and the robot are in close proximity to each other (physical interaction)

2

CANDA

Overall Goals

- Objective 1 Prediction of Human-Body Motion
- Objective 2 Human-Robot Joint Motion Plans
- Objective 3 Human-Robot Communication
- Objective 4 Awareness in Human-Robot Interaction
- Objective 5 VR Human-Robot-Interaction Component

SOT COL

3

February 11, 2021

Task 6.1 – Human-Body Prediction [M6-M25]

(Leader: UPC)

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	0	0	12	0	0	0	1	0	0

Task 6.2 – Human-Robot Motion Planning in Agreement [M12-M36]

(Leader: UPC) Partner UNIROMA3 ктн UNIROMA1 UPC UNICLAM DTI PALEBLUE PAL AGRIM. RSA PM 0 0 0 18 0 0 0 0 0 0 SAPIENZA February 11, 2021 4

Tasks Description

Task 6.3 – Human-Robot Communication [M6-M30]

(Leader: UNIROMA1)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	0	18	0	0	5	0	0	1	0

Task 6.4 - Human-Robot Awareness (Mental Model of Robotic Actions) [M25-M36]

(Leader: UNIROMA1)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA	
РМ	0	0	15	0	0	0	0	0	0	0	
The agests books is to bolic 2017 houses from and the descent of the state of the s								PIEN			
ebruary 11, 2021											

5

Tasks Description

Task 6.5 – VR Human-Robot-Interaction Component [M13-M18]

(Leader: PALEBLUE)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	0	6	0	0	3	7	0	0	0

6

February 11, 2021

Deliverables			PART COLLARD			
D6.1: Human body prediction and human-robot motion planning	Leader: UPC	Delivery Month:	M36			
The methods for human body prediction and human-motion planning in agreement are described.						
D6.2: Human-Robot Communication	Leader: UNIROMA1	Delivery Month:	M30			
The design of the human-robot communication protocol is completed, and the communication modalities are defined.						
D6.3: Human-Robot Awareness	Leader: UNIROMA1	Delivery Month:	M36			
The design of a semantic representation of the environment and the action plans for both user and robot are described.						
D6.4: VR Human-Robot-Interaction Component	Leader: PALEBLUE	Delivery Month:	M18			
The VR farming environment includes modules for connecting human actors via VR and robot actors via ROS.						

The amber 1 handled by the twenter 2000 Previously Programmers of the furnished interview of the 2000 MM

February 11, 2021

7

# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP[3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

The ample is build by the darger 2000 Presents Program of the burgers' trees with first dargers of the 1000 present.

February 11, 2021

SAPIENZA

Critical Activities (next 12 Months)

Starting activities:

- M6 Human-Body Prediction
- M6 Human Robot Communication
- M12 Human Robot Motion Panning in Agreement

Technical States in the second state in the second state in the second state in the second state in the second states in the second sta

9

Technical Discussion

- T6.1. Human-Body Prediction
- T6.2. Human-Robot Motion Planning in Agreement
- T6.3. Human-Robot Communication
- T6.4. Human-Robot Awareness (Mental Model of Robotics Actions)
- T6.5. VR Human-Robot Interaction Component

Task 6.1 – Human-Body Prediction [M6-M24](Leader: UPC)

Objectives:

- Predict human-body motions in the next future
 - Predict the human-body with respect to the robot platform
 - Predict the human-arm and hand motion

Important issues:

- Precise detection of human-joints
- Abrupt changes of human-arm and body
- Partial occlusions
- Real-time

12	The amount is handed by the memory 2020 Processed Programmer (PPR-Language Draws under Vanet Agricensed No. 121(2):000
Fobruary 11	2021

```
February 11, 2021
```

11

• Methods:

- CNNs for human-body motion prediction
- CNNs for human-arm motion prediction
- Computer vision techniques

inpainting, 17th International Conference on Computer Vision, 2019, Seoul, pp. 7133-7142.

February 11, 2021

Kickoff Meeting – UPC – [Alberto Sanfeliu] – CSIC – [Juan Andrade, Francesc Moreno]

Prediction Poget

510019 11, 2021

Task 6.2 – Human-Robot Motion Planning [M12-M36](Leader: UPC)

Objectives:

- Develop shared motion plans between the robot and the human
 - Human-robot platform motion shared plan
 - Human-robot arm shared plan

Important issues:

- Collision avoidance plan
- Sharing knowledge models
- Agreement models
- Anticipation models
- Real time


```
February 11, 2021
```


OT COL

Task 6.2 – Human-Robot Motion Planning [M12-M36](Leader: UPC)

Methods:

- PRM motion plans of the robot and the human
- Reinforcement planning methods
- Motion anticipation and adaptation
- Agreement methods

February 11, 2021

Kickoff Meeting – UPC – [Alberto Sanfeliu] – CSIC – [Juan Andrade, Francesc Moreno]

Task 6.3 – Human-Robot Communication [M6-M30] (Leader: UNIROMA1)

Goals:

- Development of the formal model of the language
- Communication modalities:
 - Spoken language
 - Gesture
 - Sound
 - Other devices

[Images taken from Adamides et al. article «Human-Robot Interaction in Agriculture: Usability Evaluation of three Input Devices for Spraying Grape Clusters»]

February 11, 2021

Selecting targets (grape clusters) using a typical pointing device (mouse)

Selecting targets (grape clusters) using a gesture-based interface (Wiimote)

Selecting targets (grape clusters) using a digital pen on a smart interactive whiteboard

NDP
Grounded terms between humans and robots (grape, bunch, harvest, prune) Simple language -> easily understandable

• Types of messages to be exchanged (requests, orders, tasks)

Robot

- Group consisting of several people and several robots
- Minimal interaction devices (hands free)

Communication requirements

Multimodality

Voice

Gesture

Device

Grapes Harvesting

Sound / Lights

February 11, 2021

User

February 11, 2021

17

- Increase robustness -> overcome problems related to a single communication channel:
 - Noise (language)
 - Misunderstanding (language)
- Increase usability of the system
- Semantically rich input streams can support mutual disambiguation for the execution phase

OT COL

Task 6.4 – Human-Robot Awareness [M25-M36] (Leader: UNIROMA1)

Goal: Sharing of the cognitive model of the situation

- Semantic Map (high level representation of the environment)
 - · Addition of semantic information to the elements in the agriculture scenario
 - · Robot ability to understand orders associated with human concepts and intended objects
 - [Article «Semantic Information for Robot Navigation: A Survey» from Crespo et al.]

Execution plans through Petri Net Plans (high level representation of the tasks)

- · High-level plan representation formalism based on Petri Nets
- · Explicit and formal representation of actions and conditions
- · New application to HRI for collaborative working
- Useful to design a cooperative execution of a task

[Article «Petri Net Plans: A framework for collaboration and coordination in multi-robot systems» from Ziparo et al.]

February 11, 2021

19

SAPIENZA

Semantic Map

Semantic Segmentation

The angle 1 handwine the worker 2007 research Programs

[Left Image taken from Palacios et al. article: «A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions»] [Right image taken from Santos et al. article «Grape detection, segmentation and tracking using deep neural networks and three-dimensional association»]

February 11, 2021

20

SAPIENZA

Petri Net Plans

- Goal: support in designing and implementing complex highlevel multi-robot behaviours
 - Multi-robot system: need for coordination of robots actions to perform complex tasks
 - Collaborative behaviours: people and robots work together to accomplish a set of goals

[Image taken from Sebastiani et al. article «Dealing with On-Line Human-Robot Negotiations in Hierarchical Agent-Based Task Planner»]

BOTCOL

Task 6.5 – VR Human-Robot-Interaction Component [M13-M18] (Leader: PaleBlue)

Technical Goals:

- 3D environment supporting communication.
- Awareness between humans and robots.
- Human-Robot motion planning.
- Human-Robot communication.
- Calibration of virtual environment related to Human-Robot awareness.

The state of the s

PaleBlue

- Human models: visual, physical, sensor-centric
- Physical model for interactions
- Voice communication

$\langle \rangle$	The angle 13 factor by the there 2021 Presenant Programms (Phylogenetic December 2021 Presenant for 1920 adds
February 11	, 2021

Technical Discussion: PaleBlue

- Sensors available so far
- Current human detection methods
- Gestures identified so far

PaleBlue

Coordination and Planning of Activities

- M6 next meeting for the starting of the activities
- Monthly meetings to measure the status of achievement of the WP
- Creation of WP6 mailing list

12	The angle () hashed by the mercial 2000 Presiments Programmers of the language stress and related Agreement for 1910 MMR
February 11	, 2021

Let's move on to the next WP...

SAPIENZA

25

Any questions

26

February 11, 2021

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP7 - Multi-Robot Coordination

Coordination of Heterogeneous Team of Robots

Logistic robots for logistic tasks, e.g., transport boxes of harvested grapes

Agricultural robots for agronomic tasks, e.g., harvesting or pruning

February 11, 2021

Design of **distributed** coordination control strategy to **optimally** carry out the requested agronomic activities

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

1

Goal

Objectives

- Objective 1 Box-Exchange Coordinated Maneuvering
- Objective 2 Distributed Estimation of Filling Time Dynamics
- Objective 3 Distributed Optimal Field Coverage by Logistic Robots
- Objective 4 Distributed De-Synchronization by Agricultural Robots

February 11, 2021 Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi] 3

Tasks Description

Task 7.1 – Coordinated Maneuvering for Box-Exchange Operation [M8-M31]

(Leader: UNIROMA3)

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	11	0	0	1	0	6	0	0	0	0

- We will start from the outcome of the Task 3.3 (design of the box exchange mechanism) to characterize a relative state configuration among the two robotic platforms to facilitate the exchange of the boxes.
- We will model this coordination problem as a relative pose stabilization problem and resort to tools coming from system and control theory to design a proper control law to achieve this objective.
- · We will investigate whether a dynamic local planner may be required for handling unmodeled factors such the uneven nature of the terrain and the unexpected presence of obstacle appearing during the manoeuvring.

Tasks Description

Task 7.2 – Distributed Protocols for Dynamical Systems Estimation [M25-M41]

(Leader: UNIROMA3)

Partner	UNIROMA3	КТН	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	11	0	0	1	0	6	0	0	0	0

- We will start by developing a simply **dynamical model** encoding the **time required for filling** a box due for example to fruit harvesting or vine pruning.
- We will resort to observer-based techniques in order to design a **distributed protocol** for **estimating** the (average of the) **main parameters** of the box-filling dynamics carried out by each agricultural robot in the field.

Task 7.3 – Distributed Protocols for Optimal Field Coverage [M18-M42]

(Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	11	0	0	1	0	6	0	0	0	0

- We will develop distributed methodologies for **spatially coordinating** the logistic robots in order to **optimally fulfil** the box-exchange **service requests**.
- We will model the occurring of box-exchange by means of **time-varying** and **spatially varying functions** by exploiting the outcome of Task 7.2 and we will compute the **priority** that each logistic robot may give with respect to any of the box-exchange service requests by resorting to a **distributed data association** problem.
- We will encode the optimal field coverage problem as an **optimization problem** and design **distributed coordination** strategy to let each logistic robot move towards the next agricultural robot likely to be served.

February 11, 2021

NDP

Tasks Description

Task 7.4 – Distributed Protocols for Dynamical Systems De-Synchronization [M25-M41]

(Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	14	2	0	0	5	0	0	0	0	0

- We will develop **distributed coordination** methodologies for **controlling the execution** of the tasks carried out by the agricultural robots by resorting to the dynamical modelling of the filling time obtained as outcome of Task 7.2.
- We will attempt to schedule the request of services in such a way to **minimize the occurrence of any peak** of requests in order to **facilitate the optimal field coverage** investigated on Task 7.3.

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

NDP

7

Task 7.5 - VR Multi-Robot Component [M15-M22]

(Leader: PALEBLUE)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	14	2	0	0	5	0	0	0	0	0

- Enhancement of the VR farming environment with **support of multiple robot participants** in order to facilitate the **validation of robot coordination** developed in this WP.
- The 3D environment will be used as the medium for virtual interactions between the robot actors. Main aspects:
 - modelling of the relative perception capabilities (e.g., laser-based, camera-based) among the robots, using
 software components develop to mimic real interactions, and transferring the interactions to the virtual space.
 - modelling of the **pairwise communication** among the robotic agents (e.g., anisotropic communication channel with distance-based fading reliability) based on 3D space calculation and signal distribution models.

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

Technical Goals:

- VR farming environment with multiple robot participants.
- Relative perception for visual perception • between robots.
- Modelling communication between robotic agents.

February 11, 2021

Del	live	rab	les

D7.1: Box-Exchange Coordinated Manoeuvring Leader: UNIROMA3 Delivery Month: M20

The control algorithm for manoeuvring is complete and can enable the box-exchange through the specific tool.

D7.2: Multi-Robot Distributed Protocols Leader: UNIROMA3 Delivery Month: M42 The design of the multi-robot distributed protocols for dynamical systems estimation and de-synchronization as well as field coverage is complete.

D7.3: VR-Robot Component

The VR farming environment includes the robots' perception capabilities and the pairwise communication among the robots.

9

9

Leader: PALEBLUE

Delivery Month: M22

Milestones

# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP[3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

11

I. Box-Exchange

- I. Sensors and Communication Selection (by the end of February)
- II. Main aspects of BEM Mechanical Design (by the end of April)
- III. Robot-to-Robot Interaction Simulation (by the end of December)
- II. Coordination at large
 - I. Multi-Robot Simulation Environment (basic version by the end of December)

ROMA

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

Technical Discussion

- Numerical Validation:
 - Definition of an (intermediate) Simulation Environment (Gazebo?)
 - Integration of Gazebo models with PALEBLUE VR Environment
 - Definition of Robot Models (unique model for both environments?)

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

• Experimental Validation:

February 11, 2021

13

Maneuvering: how to handle the logistic? (in Denmark?)

Coordination and Planning of Activities

- Monthly meetings to measure the status of achievement of the WP
- The leading unit of each task is responsible for its timely completion
- The leading unit of each task is responsible for the drafting of the related deliverable (all involved units must contribute)
- The leading unit of the WP is responsible for communicating with the PI in the case of difficulties

February 11, 2021

ROMA

Let's move on to the next WP...

Any questions

February 11, 2021

Kickoff Meeting - Roma Tre University - [Andrea Gasparri, Martina Lippi]

KoM Day 2

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

Consortium Introduction

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

Canopies: where do we come from?

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

Università degli Studi Roma Tre (UNIROMA3)

Description

- Young **public research university** founded by the Italian Ministry of Education, University and Research in **1992**.
- Roma Tre University is organized in **12 Departments** enrolling about **35.000** students and having about **1.400** academic and professional staff.
- Our **Engineering Department** was selected by the Italian Ministry of Public Education as one of the 180 **Departments of Excellence** in 2018.

Role in the Project

- Project Coordination
- <u>Leadership of WP1</u> (technical and scientific project coordination)
- <u>Leadership of WP7</u> (Design of distributed estimation, coordination and field coverage protocols)

<complex-block>

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

5

Università degli Studi Roma Tre (UNIROMA3)

Role in the Project

- <u>Leadership of Task 1.1</u> in WP1 (technical and scientific coordination)
- <u>Leadership of Task 1.3</u> in WP1 (risk assessment)
- <u>Leadership of Task T2.5</u> in WP2 (dimensioning of real-world scenarios for periodic field testing and final demo)
- <u>Leadership of Task T3.5</u> in WP3 (design of the autonomous navigating functionalities of the mobile robotic platform)

Role in the Project

- <u>Leadership of Task T7.1</u> in WP7 (coordinated maneuvering for box-exchange operation)
- <u>Leadership of Task T7.2</u> in WP7 (distributed protocols for dynamical systems estimation)
- <u>Leadership of Task T7.3</u> in WP7 (distributed protocols for optimal field coverage)
- <u>Leadership of Task T7.4</u> in WP7 (distributed protocols for dynamical systems de-synchronization)

7

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

Università degli Studi Roma Tre (UNIROMA3)

Role in the Project

- <u>Leadership of Task T9.5</u> in WP9 (field validation of the multi-robot coordination capabilities)
- <u>Leadership of Task T9.7</u> in WP9 (final demonstration of the integrated system within a real-world (1:1 scale) table- grape vineyard)
- <u>Leadership of Task T10.3</u> in WP10 (dissemination and synergies with DIH-agROBOfood)

Team

Andrea Gasparri Associate Professor

Martina Lippi Research Affiliate

Stefano Panzieri Full Professor

Antonio Furchì Ph.D Student

Giovanni Ulivi Full Professor

Matteo Santilli Research Affiliate

Federica Pascucci Associate Professor

Renzo Carpio Ph.D Student

10

9

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

Università degli Studi Roma Tre (UNIROMA3)

Expertise

- Field Robotics
- Autonomous Navigation
- SLAM
- Multi-Robot Coordination
- Distributed Estimation

ROMA TRE

Distributed Control

Autonomous Navigation in Dynamic

Multi-Robot Coordination with limited FOV

Large-Scale Simultaneous Mapping and Localization

Multi-Robot Collaboration

Projects

PANTHEON

PANTHEON – PRECISION FARMING OF HAZELNUT ORCHARDS (H2020-SFS-2017-1) [2017 – 2021]

PARADISE — PRECISION FARMING FOR SUSTAINABLE PRODUCTION IN SUBURBAN AREAS (POR-FESR 2014-2020 REGIONE LAZIO) [2020 – 2022]

RESISTO — RESILIENCE ENHANCEMENT AND RISK CONTROL PLATFORM FOR COMMUNICATION INFRASTRUCTURE OPERATORS (H2020-CIP-2016-2017) [2018 – 2021]

COCKPITCI – CYBERSECURITY ON SCADA: RISK PREDICTION, ANALYSIS AND REACTION TOOLS FOR CRITICAL INFRASTRUCTURES (FP7-SEC-2011-1) [2012 – 2014]

ROMA

ATENA — ADVANCED TOOLS TO ASSESS AND MITIGATE THE CRITICALITY OF ICT COMPONENTS AND THEIR DEPENDENCIES OVER CRITICAL INFRASTRUCTURES (H2020-DS-2015-1) [2016 – 2019]

NECTAR — NETWORKED COOPERATIVE TEAMS OF AUTONOMOUS ROBOTS (FIRB FUTURO IN RICERCA 2008) [2010 – 2014]

KICKOFF MEETING - KTH - [DIMOS DIMAROGONAS] • FEBRUARY 12, 2021

12

Kungliga Tekniska Högskolan (KTH)

Description

- Largest technical university in Sweden (1/3 of Sweden's capacity for engineering and technical research at post-secondary level)
- Part of WASP and KTH Digital Future environments
- Expertise & perspectives from the private and public sectors provided in collaborations & knowledge exchange with external partners and other universities

11

Kungliga Tekniska Högskolan (KTH)

Role in the Project

- Leadership of WP8 (Task Planning for Human-Multi-Robot Systems)
- Leadership of Task T9.6 in WP9 (Field Validation of the Task Planning for Human-Multi-Robot Systems)

14

13

13

KICKOFF MEETING - KTH - [DIMOS DIMAROGONAS] • FEBRUARY 12, 2021

Carlos Rodríguez de Cos

Expertise:

Task planning, Control of multi-robot systems

Kungliga Tekniska Högskolan (KTH)

Unit Members:

Robotics, Perception, and Learning (RPL) Lab

<u>Danica Kragic</u>

Hang Yin

Ali Ghadirzadeh

Expertise:

- Vision for robotics
- Learning

15

Sapienza Università di Roma (UNIROMA1)

Description

SAPIENZA

- One of the oldest (1303) and largest Universities, the largest in Eu.
- Sapienza University is organized in 68 Departments, 12 Faculties enrolling about 115,000 students with about 5500 academic and professional staff.
- Our Department was selected by the Italian Ministry of Public Education among the 180 Departments of Excellence focused on Cyber Security, 2018.

Sapienza Università di Roma (UNIROMA1)

Role in the Project

- Leadership of Task T2.4 (Human-Robot Communication Specifications)
- Leadership of Task T4.3 in WP4 (Grape Quality Estimation)
- Leadership of Task T6.3 in WP6 (Human Robot Communication)
- Leadership of Task T6.4 in WP6 (Human Robot Awareness)
- Leadership of Task T9.4 in WP9 (Field validation of the hri capabilities)

POR

Sapienza Università di Roma (UNIROMA1)

Team Expertise

- Artificial Intelligence
- Human Robot Interaction
- SLAM
- Action Planning
- Robot Perception
- AI and Robotics for

Precision Farming

SAPIENZA

21

KICKOFF MEETING - UNIROMA1 - [DANIELE NARDI] • FEBRUARY 12, 2021

Projects

21

SAPIENZA

European Robotics League plus Smart Cities Robot Competitions CA H2020 2019-2021

A European AI on demand platform and Ecosystem H2020 2019-2021

Bringing AI Planning to the European AI On-Demand Platform H2020 2021-2023

BUBBLES: Defining the BUilding Basic Blocks for a U-Space SEparation Management Service FP7 2013-2016

European Robotics League plus Smart Cities Robot Competitions

H2020 2015-2018

Robots for Exploration, Digital Preservation and Visualization of Archeological Sites

FP7 2013-2016

Description

- The Universitat Politècnica de Catalunya (UPC) (www.upc.edu) is a public institution dedicated to research and higher education and it is one of the biggest universities in Spain, with over 32.000 students, 33 departments and 205 research groups. UPC participates in this project with IRI and UMA.
- The Institut de Robòtica i Informàtica Industrial (IRI, www.iri.upc.edu) is a Joint Research Institute that hosts researchers both from the Universitat Politècnica de Catalunya (UPC) and from the Spanish Scientific Research Council (CSIC), and participate in this project as a Joint Research Unit (JRU), with UPC leading the participation, and CSIC acting as 3rd party.
- Unit of Agricultural Machinery (http://www.uma.deab.upc.edu) is a recognized research group bellowing to UPC. Main activities of UMA are focused in research, education and extension activities related with agricultural machinery.

23

KICKOFF MEETING – UNIVERSITAT POLITÈCNICA DE CATALUNYA- [ALBERTO SANFELIU] • FEBRUARY 12, 2021

Universitat Politècnica de Catalunya (UPC)

Role in the Project

- Leadership of WP4 (Agronomic-oriented perception)
- Leadership of WP10 (Dissemination and Promotion of the Exploitation)

EXCELENCIA MARÍA

Role in the Project

- Leadership of Task T4.1 in WP4 (Agronomic Target Detection and Modelling)
- Leadership of Task T4.2 in WP4 (Agronomic Target Localization)
- Leadership of Task T6.1 in WP6 (Human-Body Prediction)
- Leadership of Task T6.2 in WP6 (Human-Robot Motion Planning)
- Leadership of Task T10.1 in WP10 (Website Construction and Updates)
- Leadership of Task T10.2 in WP10 (Dissemination)
- Leadership of Task T10.4 in WP10 (Communication Activities and Event)

25

KICKOFF MEETING - UNIVERSITAT POLITÈCNICA DE CATALUNYA- [ALBERTO SANFELIU] • FEBRUARY 12, 2021

Universitat Politècnica de Catalunya (UPC)

Unit Members

- <u>Alberto Sanfeliu (UPC-IRI)</u>
- Emilio Gil (UPC-UMA)
- Juan Andrade-Cetto (CSIC-IRI)
- Antonio Grau (UPC-IRI)
- Yolanda Bolea (UPC-IRI)
- Rene Alquezar (UPC-IRI)
- Ana Puig-Pey (UPC-IRI)
- Joan Vallbè (UPC-IRI)
- Francesc Moreno-Noguer (CSIC-IRI)
- Anais Garrell (CSIC-IRI)
- Joan Solá (CSIC-IRI)

UNIVERSITAT POLITECNICA DE CATALUNYA BARCELONATECH

Expertise

IRI focuses its activity in human-centered robotics research with expertise in various areas of robotics, such as computational kinematics and geometry, computer vision, industrial robotics, mobile robotics (legged and wheeled robots), artificial intelligence, and energy systems.

UMA has large experience in viticulture, especially in spray application technology. Precision Agriculture linked to pesticide application equipment, variable rate application, development of new technologies to improve efficacy of sprayers.

- Robotics
- Social robotics
- Artificial Intelligence
- Human-body prediction
- Perception systems
- Precision Farming

27

Sensor fusion in unmanned aerial vehicles (H2020 AEROARMS project) [Auton. Robots 2018]

3D Lidar Deep learning for object tracking [ICPR, 2018]

Precise localization in aerial grasping (EU ARCAS project)

Ultra fast object tracking (microseconds) with event-based cameras (DPI EB-SLAM project)

transport: ADAS

tracking

- Perception, path planning and decision making

UNIVERBITAT POLITECNICA DE CATALUNYA BARCELONATECH

- Sensory data fusion for localization - SLAM and Deep Learning Object detection and tracking using Deep

Learning

29

29

KICKOFF MEETING - UNIVERSITAT POLITÈCNICA DE CATALUNYA- [ALBERTO SANFELIU] • FEBRUARY 12, 2021

Universitat Politècnica de Catalunya (UPC): IRI

Real-time SLAM in a truck (EU LOGIMATIC project)

Autonomous navigation of straddle carrier in port container terminals (H2020 LOGIMATIC project)

Sensor fusion for advanced driving assistance systems (FICOSA), [ECMR17]

Delivery of persons and goods (DPI ColRobTransp project)

KICKOFF MEETING - UNIVERSITAT POLITÈCNICA DE CATALUNYA- [ALBERTO SANFELIU] • FEBRUARY 12, 2021

Universitat Politècnica de Catalunya (UPC)

IRI Projects

32

KICKOFF MEETING - UNIVERSITAT POLITÈCNICA DE CATALUNYA- [ALBERTO SANFELIU] • FEBRUARY 12, 2021

Universitat Politècnica de Catalunya (UPC)

UMA Projects

34

Università degli Studi di Cassino (UNICLAM)

Description

- Public research university founded by the Italian Ministry of Education, University and Research in 1979.
- UNICLAM University is organized in 5 Departments enrolling about 9.000 students and having about 500 academic and professional staff.
- Our Engineering Department (DIEI) was selected by the Italian Ministry of Public Education as one of the 180 Departments of Excellence in 2018.

35

Università degli Studi di Cassino (UNICLAM)

Role in the project

- Leadership of **WP5** (Single Robot Functionalities)
- Leadership of Task 5.1 (Two Arms Coordination Functionalities)
- Leadership of Task 5.2 (Robot Safety Functionalities)
- Leadership of Task 5.3 (Robot Physical Interaction Functionalities)
- Leadership of Task 9.2 (Field Validation of the Robot Manipulation Functionalities)

Università degli Studi di Cassino (UNICLAM)

Alessandro Marino Associate Professor

Paolo Di Lillo Post Doc

Daniele Di Vito Post Doc

Gianluca Antonelli Full Professor

Giuseppe Gillini Post Doc

webuser.unicas.it/lai/robotica

Filippo Arrichiello Associate Professor

Giacomo Golluccio PhD Student

Giuseppe Fusco Associate Professor

38

37

37

KICKOFF MEETING - UNIVERSITÀ DEGLI STUDI DI CASSINO - [ALESSANDRO MARINO] • FEBRUARY 12, 2021

Università degli Studi di Cassino (UNICLAM)

ROBUST H2020 (2015-20)

Robotic subsea exploration

WiMUST H2020 (2015-18)

Sonar Technology

exROV

AEROARMS H2020 (2015-19)

Aerial Robots with multiple arms

Widely scalable Mobile Underwater

DexROV H2020 (2015-18) Dexterous ROV **Operations Communications Latencies**

technologies

Università degli Studi di Cassino (UNICLAM)

EUMR H2020 (2018-21) Robotic subsea exploration technologies

TARMEM QNRF (2018-21) CMU Doha

C4E - PON (2018-21) Monitoring of illegal spills through the synergistic use of advanced technologies

Progetto Dipartimenti di Eccellenza MIUR (2018-22)

ROBILALIT ROBILAUT PON (2019-2022) MoBILe sampling robot with underground autonomous navigation

39

39

KICKOFF MEETING - UNIVERSITÀ DEGLI STUDI DI CASSINO - [ALESSANDRO MARINO] • FEBRUARY 12, 2021

- Satellite Imagery Mining
- Signal Processing Advanced Networks

Danish Technological Institute (DTI)

Description

- Self-owned and not-for-profit Research & Technology Organisation (RTO) that dates back to 1906, organized in 7 major divisions with more than 40 centers of expertise.
- DTI's Centre for Robot Technology is located in Odense and is a leading European robotics innovator with a staff of around 45 robotic experts and 2,800m2 of innovation facilities.
- DTI is a pioneer for applicationorientated technology and knowledge transfer between research and the business community, particularly for SMEs.

42

41

41

KICKOFF MEETING - DANISH TECHNOLOGICAL INSTITUTE - [TSAMPIKOS KOUNALAKIS] • FEBRUARY 12, 2021

Danish Technological Institute (DTI)

Areas of expertise

DIGITALISATION

& INDUSTRY 4.0

PRODUCTIVITY

& QUALITY

DRONE TECHNOLOGY

ROBOT SAFETY

ROBOTS

MOBILE ROBOTS

SENSORS

Danish Technological Institute (DTI)

Role in the Project

DTI is lead on WP3

- HW and SW development and integration of the robotic prototypes.
- Design, develop and test required prototype mechanisms.
- Endow the robotic prototype with autonomous localization and navigation capabilities.
- Acceptance testing of the robotic prototypes.

KICKOFF MEETING - DANISH TECHNOLOGICAL INSTITUTE - [TSAMPIKOS KOUNALAKIS] • FEBRUARY 12, 2021

Danish Technological Institute (DTI)

Role in the Project

- Leadership of Task T2.2 in WP2 (robot specifications and KPIs)
- Leadership of Task T9.1 in WP9 (field validation of robot navigation)

Danish Technological Institute (DTI)

Team

Lars Dalgaard Section Leader

Tsampikos Kounalakis

Consultant - CANOPIES

project manager

Jonas Bæch Consultant

Kasper Camillus Jeppesen Consultant

Xaver Kroischke

Specialist

(Leveral)

46

45

45

KICKOFF MEETING - DANISH TECHNOLOGICAL INSTITUTE - [TSAMPIKOS KOUNALAKIS] • FEBRUARY 12, 2021

Danish Technological Institute (DTI)

Expertise

2

DANISH TECHNOLOGICAL

Danish Technological Institute (DTI)

Relevant Projects

KICKOFF MEETING - PALEBLUE AS - [FELIX GORBATSEVICH] • FEBRUARY 12, 2021

PaleBlue AS (PALEBLUE)

Description

- PaleBlue is a leading simulation company with experience in VR, AR and 3D simulators. 2019 Top 10 Simulation company.
- Founded in 2013 in Stavanger, Norway. Now offices in NO, NL, RU and US.

 Delivering simulators across segments for Oil & Gas (Neptune Energy), Space (NASA and ESA), Healthcare (Gullak), and Governmental.

Team Members

49

Felix Gorbatsevich

Juan Correa

Vladimir Keda

Urte Villnow

Vladimir Dukhanin

Pascal Serrarens

PaleBlue

PaleBlue AS (PALEBLUE) - Digital twins

Selected projects

Modeling operations with PaleBlue VR toolset for Extreme Environments training

Industry 4.0 tools providing AR Condition Monitoring tools to the factories & plants

Building a tool for Alna District to familiarize with the new town hall, and perform employee training

VR training for astronauts in Zero Gravity making a digital twin of the International Space Station

PaleBlue

One of the largest HSE & Diving professional training providers in South-East Asia and Oceania

Continuously adding industrial partners that leverage on the PaleBlue Simulation Platform

53

KICKOFF MEETING - PALEBLUE AS - [FELIX GORBATSEVICH] • FEBRUARY 12, 2021

PaleBlue AS (PALEBLUE)

PaleBlue

Role in the Project

- Lead the development of the 3D and VR simulation platform components and interfaces to facilitate virtual environments for interactions between robots, humans and the environment.
- Lead the development of:
 - VR Multi-Human-Multi-Robot Interaction Component
 - VR Multi-Robot Component
 - VR Human-Robot Interaction Component
 - VR Agronomic-Oriented Perception
 - VR Farming Environment.

	The proper line of the second se	PaleBlue	(State of the sta
55			

KICKOFF MEETING - PALEBLUE AS - [FELIX GORBATSEVICH] • FEBRUARY 12, 2021

PaleBlue AS (PALEBLUE)

Role in the Project

- Leadership of Task T2.6 in WP2 (Virtual Reality Farming Environment Specifications)
- Leadership of Task T3.7 in WP3 (Simulated Environment and Basic Robotic Components)
- Leadership of Task T4.4 in WP4 (VR Agronomic-Oriented Perception Component)

Role in the Project

- Leadership of Task T5.4 in WP5 (VR Mobile-Robot Component)
- Leadership of Task T6.5 in WP6 (VR Human-Robot-Interaction Component)
- Leadership of Task T7.5 in WP7 (VR Multi-Robot Component)
- Leadership of Task T8.4 in WP8 (VR Multi-Human-Multi-Robot Interaction Component)

KICKOFF MEETING - PAL ROBOTICS • FEBRUARY 12, 2021

59

PAL Robotics (PAL)

Team

Principal Investigator

Francesco Ferro francesco.ferro@pal-robotics.com

Project administration

Sarah Terreri sarah.terreri@pal-robotics.com

KICKOFF MEETING - PAL ROBOTICS • FEBRUARY 12, 2021

Research Team

Dr. Alessandro Di Fava

European Project Manager

alessandro.difava@pal-robotics.com **Robotics Engineer** Technical coordination of PAL Robotics' EU projects team

Dr. Jordi Pages

jordi.pages@pal-robotics.com Head of Intra-logistics Solutions TIAGo Product Manager

CANOPIES Internal Group canopies@pal-robotics.com Technical team

PAL Robotics (PAL)

61

KICKOFF MEETING - PAL ROBOTICS • FEBRUARY 12, 2021

62

61

PAL Robotics (PAL)

Role in CANOPIES

- Agronomic dual arms system design (T3.2 leaders)
 - Starting point: PAL Robotics' TIAGo++ upper body
 - **Customizations** include: torque sensors for each arm's joint, 2 DoFs in the torso base, investigating the increase in IP rating for dust and water protection, etc.
- Agronomic end-effectors design for harvesting and pruning (**T3.3 leaders**)
- Expose a hardware abstraction layer with open interfaces for the mid-level control (WP3, WP5, WP6, WP8)
- Participation in Requirements, Validation, Dissemination and Exploitation activities (WP2, WP9, WP10, T10.5 leaders)

• Timeline

- First Release of Robot Prototypes at M14
- Final Release of Robot Prototypes at M40

Agrimessina (AGRIMESSINA)

Description

- Table grapes grower and marketer since 1960;
- More than 12.000 Tons of grapes yearly harvested;
- · 350 Hectare total production around Puglia;
- 60 varieties of table grapes (mostly seedless);
- Main Italian marketer in UK with 70% market share in supermarkets chain.

63

63

KICKOFF MEETING - AGRIMESSINA- [FRANCESCO MESSINA - GIUSEPPE VALENZANO] • FEBRUARY 12, 2021

64

Agrimessina (AGRIMESSINA)

Role in the Project

- Leadership of WP2 (Functional Specifications);
- Leader in task 2.1 (Representative Agronomic Activities)
- Support in task 4.3 (Agronomic Quality Assessment);
- Support in task 5.1 (Two arms coordination Functionalities);

ogriMessina

- Support in task 6.3 (Human-Robot Communication);
- Support in task 8.1 (Learning from Human Demonstrations)

Agrimessina (AGRIMESSINA)

Team

Francesco Messina Agrimessina sales manager

ogriMessina

(I)

65

65

Agrimessina (AGRIMESSINA)

Expertise

- Table grapes agronomic aspects;
- Harvesting operations;
- Pruning operations;
- Post-harvest techniques;
- Table grapes industry.

KICKOFF MEETING - AGRIMESSINA- [FRANCESCO MESSINA - GIUSEPPE VALENZANO] • FEBRUARY 12, 2021

RSA Srl (RSA)

Shorth Company profile

Founded in 2001, RSA is an Italian SME specializing in management consulting services for high-end innovation processes and industrial development. Main activities focus on:

(i) Technical assistance to facilitate client's access to European and Italian funding instruments such as:

- SMEs support funding for innovative industrial investments.
- R&D funding (Industry, Academia and PRBS).
 EFRD (2007-14; 2014-2020) funding schemes for innovation.
 FP6 FP7 H2020 (mainly EASME funding schemes like SME Instrument, FTI).

(ii) Project management applied to Italian and EU [FP7, H2020, LIFE] funding schemes. Main activities include:

- Support partnership creation.
- Support structuring the project. Design and development of appropriate management structures (customized on project's needs) Proposal co-writing.
- Project's monitoring and coordination.

(iii) Business planning & feasibility studies to support Tech Transfer in Research infrastructures and SMEs) such as (active):

- Socio-economic impact assessment of EUPRAXIA research infrastructure in the regional (Lazio) and national context and study on technological spill- \checkmark over effects (INFN-LNF)
- Business planning and cost-effective resource management of LATINO (Laboratory in Advanced Technologies for INnovation) and SABINA (Source of Advanced Beam Imaging for Novel Applications) innovation projects co-financed by EFRD Lazio Italian Institute for Nuclear Physics (INFN-LNF).

(iii) Programme monitoring (EFRD), evaluation (EFRD, Medio Credito Centrale, Italian Ministry for Economic Development - MISE), external independent auditing (EFRD, EAFRD, FP7, H2020); anti-fraud auditing (Medio Credito Centrale, Invitalia).

67

KICKOFF MEETING - RSA SRL - [ALESSANDRO ALBINO FREZZA] • FEBRUARY 12, 2021

68

Role in CANOPIES

T1.2 Project Management.

This task deals with the implementation of all typical organizational and coordination actions relating to the management of the GA and CA. Main RSA activities will include:

- support the CO to run the overall management of the Project and workplan monitoring;
- support the CO in organizing all periodic meetings to be held among partners on a regular basis;
- □ support the Project Management Committee (PMC);
- Lever track of the budget through the monitoring of the Use of the Resources (UoR) on a regular basis (every 6 months);
- □ support the CO as additional point of contact with the Commission for any contractual matter; liaison with EC, covering of review meetings, submission of deliverables, etc.

Assigned Deliverables: D1.1, D1.2, D1.3 + Monitoring of UoR

RSA Srl (RSA)

Staff involved

Dr. Alessandro ALBINO FREZZA

- Former Head of the Industrial Liaison Office and EU Fund Raising office at UNIROMA TRE (1996-2016). 25+ years of experience in the identification, designing and management of Research and Technological Development projects (R&TD) and TT Initiatives at international (including EC Framework Programmes), national and local level.
 Expert in accessing and managing multi-partner initiatives in the field of, collaborative research (Academia SMEs), industrial research and SMEs support.
- EU Projects management (including financial auditing).
- Technical. assistance for the implementation of local development integrated projects (EFRD, ESF). Independent expert evaluator for R&TD projects (FP6, H2020-EIC-FTI-2018-2020_23-05-2019, H2020-SC1-PHE-CORONAVIRUS-2020-2) and Italian regional development programmes within EFRD ESF funds.
 Active H2020 coordination tasks:
 - ✓ GISCAD-OV Galileo Improved Services for Cadastral Augmentation Development On-field Validation (GA No. 870231) - H2020-SPACE-EGNSS-2019 – Type of Action IA
 - FLASH Far-infrared Lasers Assembled using Silicon Heterostructures (GA No. 766719) H2020 FETOPEN-1-2016-2017 – Type of Action RIA
 - PANTHEON Precision Farming of Hazelnut Orchards (GA No. 774571) H2020-SFS-2017-1 Type of Action RIA.

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

Project Overview, Ambition and Objectives

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES - Where it all started...

International Forum of Agricultural Robotics 2019 (FIRA 2019)

- Discussion with Giuseppe Valenzano
- Real-Needs of the Farmers
 - 1. Shortage of farmworkers
 - 2. Standardized quality of table-grape
 - 3. Modern sustainable operational model
- Meeting with Francesco Messina and Giuseppe Valenzano

Call: H2020-ICT-2018-20 (ICT-46-2020)

Specific Challenges

- Develop appropriate **autonomous capability** that has **impact on the efficiency** of key applications in the Priority Areas and moves **beyond** the current **state of the art**.
- Autonomous capability should be built from core technologies and should be proved and tested through pilot demonstrators that embed within real or near real environments.

Priority Areas

- Agri-Food
- **Robotics Core Technology**
- · Socially cooperative human-robot interaction


```
٢
```

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Vision

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

CANOPIES aims to develop novel human-robot interactions (**HRI**), human-robot collaboration (**HRC**) and multi-robot coordination (**MRC**) methodologies for implementing an effective collaborative paradigm between human workers and multi-robot teams in Precision Agriculture systems.

CANOPIES Vision

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

We envision a PA setting where **farmworkers interact** with **two** different **kinds** of **robot platforms**:

- <u>a farming robot</u> (F-R): dedicated to the execution of agronomic tasks such as harvesting the fruits or pruning the vines;
- <u>a logistics robot</u> (L-R): dedicated to the execution of logistics tasks such as the transportation of boxes of harvested grapes or removed branches.

5

6

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Vision

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

- F-R is equipped with two arms for executing agronomic tasks in a human-like manner and small loading bay for exchanging boxes (F-R BEM)
- L-R is equipped with a large loading bay for exchanging boxes (L-R BEM)

CANOPIES Vision

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

Tight collaboration between human workers and farming robots:

- Each farmworker interacts with a small team of robots to supervise and facilitate robot activities and help with agronomic or robotic tasks.
- The human operator may:
 - **improve** agronomic task execution: e.g., during the harvesting operation by removing single ruined fruits belonging to clusters to be harvested;
 - **assist** the farming platform: e.g., with the harvest by cutting any harvestquality bunch of fruits which the robot fails to detect or cannot cut;

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Vision

A Collaborative Paradigm for Human-Multi Robot Cooperation in PA

Tight cooperation between farming robots and logistic robots:

- L-R side: scheduling the provision of services in such a way to minimize the occurrence of any peak of inactivity for the F-Rs
- F-R side: scheduling the **request** of services in such a way to **minimize** the occurrence of any **peak of requests** for the L-Rs.

CANOPIES Case Study

Table-Grape Vineyard

- · Produced for direct consumption while fresh
- Extreme care is required due to
 - the fragility of the table-grape
 - the long productive life of the vine

100

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

10

9

CANOPIES Case Study

ROMA TRE

Pergola Training System

Overhead shade structure usually supported with some form of columns

- Vines are trained on this overhead structure so that the fruit develops under the canopy
- · In this way fruits are
 - · easy to reach
 - protected from sunburn

CANOPIES Case Study

Agronomic Interventions

Task	Human	Robot
Harvesting (July-	Identification of clustersAssurance of quality control	 Localization of ripe, top quality clusters and particularly the peduncle
September)	 Proper management of harvested clusters Human positioning for optimal cutting 	Generating movements to detect position of clusters Identification of good quality clusters through
	process	image evaluation (colour, shape, size)
	 Logistic organization in field Searching for clusters hidden behind 	 Precise positioning of cutting devices Location of optimal cutting position for multiple
	leaves	clusters at the same location
	 Confirming a suggested cutting point 	 Accurate management of clusters to avoid damage Careful box-filling process
Pruning	Define optimal position of selected buds allowed to become grape clusters	Identify branches to be removed and cutting site Optimal placement of cutting devices
January)	 Identify optimal cutting point for branches to be removed 	Removing process rejected buds
	Evaluate the average number of	remained buds
	zone	

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Objectives

Three Macro Objectives

- 1. Human-Robot Interaction
- 2. Human-Robot Collaboration and Multi-Robot Coordination
- 3. PA Integrated System

CANOPIES Objectives

Objective-1: Human-Robot Interaction (HRI)

- Develop novel **perception** and **collaborative** techniques to promote and facilitate the **interaction** between the human workers and the robotic platforms
- Four Specific Objectives are identified:
 - Safe HRI in shared outdoor workspaces both with and without physical interaction
 - Predicting future positions of human torso and arms in motion
 - · Efficient communication between robots and humans
 - Enable both parties to be fully aware of each other intentions

14

13

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Objectives

Objective-2: Human-Robot Collaboration (HRC) and Multi-Robot Coordination (MRC)

- Development of techniques and control strategies for collaborative implementation of agronomic operations
- Four Specific Objectives are identified:
 - Human-like bimanual robot manipulation leading to intuitive HRC
 - Successful robot programming using learning by demonstration (LbD)
 - Learning from unexpected events with human-in-the-loop
 - · Multi-robot coordination for collaborative tasks

CANOPIES Objectives

Objective-3: PA Integrated System

- Develop and implement the elements needed for a **physical demonstration** of the HRI, HRC, and MRC objectives in a permanent crops **piloting scenario**.
- Three Specific Objectives are identified:
 - Collaborative robots capable of carrying out the required agronomic tasks safely
 - Simulated farming environments for algorithm prototyping
 - · Table-Grape vineyard case-study implementation

16

15

CANOPIES Implementation

Work Plan

WP	Work Paskage Title	Lead Participant	Start	End	
No	WORK Package Title	Short Name	Month	month	
1	Project Management	UNIROMA3	M1	M48	
2	Functional Specifications	AGRIMESSINA	M1	M10	
3	Robot Platforms Development,	DTI	МЗ	M40	
5	Integration and Testing		1415	101-10	
4	Agronomic-Oriented	LIPC	мз	M30	
Perception		010	1015	10150	
5	Single Robot Functionalities	UNICLAM	M5	M36	
6	Human-Robot Interaction	UNIROMA1	M6	M36	
7	Multi-Robot Coordination	UNIROMA3	M8	M42	
8	Task Planning for Human-	ктн	M7	M42	
o Multi-Robot Systems		KIII	1017	11/142	
0	Architecture		M16	M48	
3	Field Validation	TAMONIAL	10110	11140	
10	Dissemination and Promotion	LIPC	M1	M/18	
10	of the Exploitation	ore	111	11/148	

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Implementation

Milestones

Milestone Number	Description	Related WP(s)	Due date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP [3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

CANOPIES Implementation

Common Development Platform

Goal:

- To reduce the risk of compatibility issues and speed up the integration process
- **Promote** the **interaction between partners** and **facilitate interaction** between robot components
- · Facilitate intermediate algorithm validation during the development stage

Requirements:

 A set of best practices and guidelines to produce code and documentation must be discussed

19

20

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Implementation

Assessment

- Hardware and software components will be tested before each operational period, i.e., in **June** before harvesting and in **November** before pruning.
- Each robotic prototype will go through **full testing** and **safety assessment** under **laboratory conditions** at DTI (Factory Assessment Test FAT).
- During the **integration weeks**, all **changes** will be **evaluated** in **in-field testing** before the in-field validations (Site Acceptance Test SAT).

CANOPIES Implementation

Integration Weeks (IWs)

- Full weeks during which partners will work together to integrate the developed components and check for potential issues.
- Four IWs are envisioned over the project duration:
 - One at the second year before harvesting season,
 - Two at the third year before harvesting and pruning seasons,
 - · One at the fourth year before the final demo
- IWs costs have been included in the budget of each Partner.

٢

21

KICKOFF MEETING - ROMA TRE UNIVERSITY - [ANDREA GASPARRI] • FEBRUARY 12, 2021

CANOPIES Implementation

Piloting at "Cooperativa Agricola Corsira"

- A **community** of about 20 small producers in the municipality of Aprilia, Lazio, Italy
- Vineyards trained on a pergola trellis system
- Planting Pattern: 2,60 x 2,60 m
- Height: 1,85 1,95 m
- · Varieties: Vittoria, Matilde, Pizzutello, Italia

Thanks for your attention!!!

23

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

Forewords by ICT Project Officer Antonio Puente Rodero

Let's Now Enjoy the Coffee Break!!!

Don't be shy! Let's get to know each other!

25

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP8 -Task Planning for Human-Multi-Robot Systems

Multi-Human Multi-Robot System

Heterogeneous team of robots

February 12, 2021

Humans sharing common workspace and/or controlling robots whenever needed

2

Kickoff Meeting - KTH - [Dimos Dimarogonas]

3

Overall Goal

- Design learning framework to teach the robot from human motion and transfer acquired knowledge to accomplish agronomic tasks
- Design of multi-robot task planning/control methods considering humans in the loop and in the shared workspace

Kickoff Meeting - KTH - [Dimos Dimarogonas]

 Integrate the multi-human multi-robot system in the VR farming environment

$\langle 0 \rangle$	Minute gargers in function by the memory 2020 Procession Programmers (PPM-Distribution) and a finite dispersion of the D2020-D00
February 12	, 2021

- Objective 1 Safe Human-Robot Interaction
- Objective 2 Robot Programming using Learning by Demonstration
- Objective 3 Multi-robot Task Planning with Human in Shared Workspace
- Objective 4 Multi-robot Task Planning with Human-in-the-Loop
- Objective 5 VR Multi-Human-Multi-Robot Interaction Component

Tasks Description

Task 8.1 – Learning by Human Demonstrations [M7-M42]

(Leader: KTH)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	22	0	0	0	0	0	0	2	0

Task 8.2 – Multi-Robot Task Planning with Humans in the Shared Workspace [M7-M37]

(Leader: KTH)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	22	0	1	0	0	0	1	0	0
$\langle \rangle$	mpert is Anothed by the memory 2020 Presentate Aurogenet Universities Agricultured Bas (2)	Proportion								(KIII)
ebruary 12, 20	021			Kickoff Me	eeting - KTH - [Dimo	s Dimarogo	nas]			

5

Task 8.3 – Multi-Robot Task Planning with Human-in-the-Loop [M7-M42]

(Leader: KTH)

(Leader: PALEBLUE)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	22	0	0	0	0	0	1	1	0

Task 8.4 – VR Multi-Human-Multi-Robot Interaction Component [M20-M25]

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	0	2	0	0	0	0	7	0	0	0
0	mant's facility, the herge 200 Pressed factories from onto their Agreement for 20	Programmer 25 SAR								
ebruary 12, 2	021			Kickoff Me	eeting KTH - [Dimos	5 Dimarogon	as]			

Deliverables

D8.1: Human-in-the-loop Task Demonstration and Transfer	Leader: KTH	Delivery Month:	M42
The learning framework to teach the robot from human mo setup.	tion in virtual reality environment and tra	ansfer knowledge to	the real robotic
D8.2: Multi-Robot Task Planning with Humans in the Shared Workspace	Leader: KTH	Delivery Month:	M36
The design of a temporal logic-based strategy to ensure safet	y of the human and multi-robot system in	n the shared environ	ment.
D8.3: Multi-Robot Task Planning with Humans-in- the-Loop	Leader: KTH	Delivery Month:	M42
The design of planning strategies that will incorporate huma	n preference to adapt predefined plane a	is needed.	
D8.4: VR Multi-Human-Multi-Robot interaction Component	Leader: PALEBLUE	Delivery Month:	M25
The design of Multi-Human-Multi-Robot interaction software	e module that will allow several humans a	and robots to join via	network.
The second			
February 12, 2021 Kickoff Mee	eting - KTH - [Dimos Dimarogonas]		

February 12, 2021

7

CANDRIE

Milestones

				OBOT COLLAY
# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP[3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP8	M36	Deliverables D5.2, D8.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.2, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

February 12, 2021

Technical Discussion

- Task 8.1 Learning from Human Demonstrations
 - Learning the reward function
 - Directly learn the reward from a human teacher
 - Train RL policies to maximize the reward
 - Meta-Learning
 - Learn from a dataset of demonstrations of many other tasks to train the meta-learner
 - Adapt to a new task given few demonstrations

The angle of the first sector of the first sector data frequency in the sector data for the sector data fo

February 12, 2021

Kickoff Meeting - KTH - [Dimos Dimarogonas]

Technical Discussion

• Task 8.2: Multi-Robot Task Planning with Humans in the Shared Workspace

Technical Discussion

Motion Planning

- Linear Temporal Logic (LTL)
 - Defines a spatio-temporal logic task
 - E.g., "Always eventually return to A, If in A next go to B, Never reach C and always avoid obstacles"
- Graph-based method constructs motion plan
- Human as an obstacle

Kickoff Meeting - KTH - [Dimos Dimarogonas]

February 12, 2021

Technical Discussion

Next steps:

- Extend to agronomic applications
- Incorporate timed specifications, such as,
 - Mixed interval temporal logic (MITL)
 - Signal Temporal Logic (STL)
- Re-planning and least-violating solutions while considering human presence as obstacles
- Extend to multi-robot systems

	This, angung is found for the metrical 2000 Pressmanh Programm
1.12	of the factorization contract of the Agreement free DECEMENT

February 12, 2021

Kickoff Meeting - KTH - [Dimos Dimarogonas]

13

Technical Discussion

- Multi-robot Setup
 - Humans command subgroup of robots
 - Possibly in leader-follower framework
 - Online re-planning for new human plans
- Inverse Learning
 - Extend to more general framework
 - Multi-agent learning of human preference

Kickoff Meeting - KTH - [Dimos Dimarogonas]

February 12, 2021

Objectives: PaleBlue

Objective 8.4 – VR Multi-Human-Multi-Robot Interaction Component

- - -

15

Kickoff Meeting – PaleBlue – [Felix Gorbatsevich]

- Enabling 3D environment with networking multi-user functionality.
- Full body modelling + physical modeling.
- Robots added in real time in same network environment.
- Enable kinematic physics modelling for multi-human-multi-user interactions.

February 12, 2021

PaleBlue

16

PaleBlue

15

Technical Challenges: PaleBlue

- Multi-user networking and synchronization
- Connecting several robots with ROS in same scene
- Data exchange over network for all participants

The ampert is harded by the Aurilla 2020 Presenant Prog CPAs Aurilla Concerning Control Agreement for 2020 A

February 12, 2021

Kickoff Meeting – PaleBlue – [Felix Gorbatsevich]

17

Technical Discussion

- Task 8.4: VR Multi-Human-Multi-Robot Interaction Component
 - Establishing collaboration simulation over internet
 - Digital security concerns for data exchange?

PaleBlue

February 12, 2021

Kickoff Meeting – PaleBlue – [Felix Gorbatsevich]

Coordination and Planning of Activities

- Regular meetings to measure the status of achievement of the WP
- The leading unit of each task is responsible for its timely completion
- The leading unit of each task is responsible for the drafting of the related deliverable (all involved units must contribute)
- The leading unit of the WP is responsible for communicating with the PI in the case of difficulties

Kickoff Meeting - KTH - [Dimos Dimarogonas]

February 12, 2021

19

References

Learning from Demonstrations

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, Sergey Levine, One-Shot Visual Imitation Learning via Meta-Learning, Proceedings of Conference on Robot Learning, PMLR 78:357-368, 2017.

Chelsea Finn, Sergey Levine, Pieter Abbeel Deep Inverse Optimal Control via Policy Optimization, Guided Cost Learning. ICML 2016: 49-58

Erdem Biyik, Dylan P. Losey, Malayandi Palan, Nicholas C. Landolfi, Gleb Shevchuk, Dorsa Sadigh, Learning Reward Functions from Diverse Sources of Human Feedback: Optimally Integrating Demonstrations and Preferences, 2020

Multi-Robot Task Planning with Humans in the Shared Workspace:

C. K. Verginis, C. Vrohidis, C. P. Bechlioulis, K. J. Kyriakopoulos, and D. V. Dimarogonas, "Reconfigurable Motion Planning and Control in Obstacle Cluttered Environments under Timed Temporal Tasks", ICRA 2019

L. Lindemann and D. V. Dimarogonas, "Control Barrier Functions for Signal Temporal Logic Tasks", IEEE Control Systems Letters (L-CSS), vol. 3, no. 1 pp. 96-101, July 2018.

Alexandros Nikou, Dimitris Boskos, Jana Tumova, and Dimos V. Dimarogonas, "On the Timed Temporal Logic Planning of Coupled Multi-Agent Systems", Automatica, 97, pp. 339-345, 2018.

Multi-Robot Task Planning with Human-in-the-Loop:

S. Ahlberg, D. V. Dimarogonas, "Human-in-the-Loop Control Synthesis for Multi-Agent Systems under Hard and Soft Metric Interval Temporal Logic Specifications", submitted to IEEE RAS CASE 2019. M. Guo, S. Andersson and D. V. Dimarogonas. "Human-in-the-Loop Mixed-Initiative Control under Temporal Tasks", in Proceedings of the IEEE International Conference on Robotics and Automation, 2018.

February 12, 2021

Kickoff Meeting - KTH - [Dimos Dimarogonas]

Let's move on to the next WP...

Any questions?

February 12, 2021

Kickoff Meeting - KTH - [Dimos Dimarogonas]

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP9 - Architecture and Field Validation

DIPARTIMENTO DI PRODUSERIA /NFORMATICA

2

February 12, 2021

Kickoff Meeting – Roma – [Daniele Nardi]

Kickoff Meeting - Roma - [Daniele Nardi]

Overall Goal

- This work package will focus on the experimental validation on a table-grape vineyard of the integrated system capabilities resulting from the study of the main project developments
- The field validation of the system capabilities has been organized according to the seasonal arrangement of the agricultural practices (December-January for pruning and July-September for harvesting) starting from year 2.

Kickoff Meeting - Roma - [Daniele Nardi]

February 12, 2021

3

Objectives

- i) Field Validation of the Robot Navigation Functionalities;
- ii) Field Validation of the Robot Manipulation Functionalities;
- iii) Field Validation of the Agronomic Perception Functionalities;
- iv) Field Validation of the Human-Robot Interaction;
- v) Field Validation of the Multi-Robot Cooperation;
- vi) Field Validation of the Human-Multi-Robot Task Planning;
- vii) Final Demo of the Integrated System.

4

INTERNO DE PROCESSERA PROVANTICA TOMATICA E OFFICIONALE ANDOREO INVERSE

3

SAPIENZA

Tasks Description

Task 9.1 Field Validation of the Robot Navigation Functionalities [M16-M33]

(Leader: DTI)

(Leader: UNICLAM)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	5	0	1	1	0	6	0	0	0	0

Task 7.2 – Field Validation of the Robot Manipulation Functionalities [M19-M37]

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM	. RSA
РМ	14	0	1	1	5	0	0	0	1	0
$\langle \rangle$									D	MARTIMONTO DI TRGEGNI ITOMATICA E GERTIONAJE
ebruary 12, 2	021	Lana anna		Kickoff I	Vleeting – Roma –[I	Daniele Nard	i]		()	SAPIENZA INTERSITÀ DE NOMA

5

Task 9.3 Field Validation of the Agronomic-Oriented Perception [M19-M37]

(Leader: UPC)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	0	0	3	7	0	0	0	0	1	0

Task 9.4 Field Validation of the Human-Robot Interaction [M19-M42]

(Leader: UNIROMA1)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM	. RSA
РМ	0	0	5	8	3	0	0	0	1	0
12	ngert a builted by the design 2000 Pressmall	Programm					<u>.</u>			PARTINENTO DI PROGRI MONISTICA E GENTIORAGE
ebruary 12, 20	021			Kickoff I	Veeting – Roma –[[Daniele Nard	i]		W	APIENZA SIMERIITÀ DE ROMA

Tasks Description

Task 9.5 – Field Validation of the Multi-Robot [M19-M42]

(Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
PM	5	2	0	0	3	0	0	0	1	0

Task 9.6 – Field Validation of the Task Planning for Human-Multi-Robot Systems [M31-M42]

(Leader: KTH)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	5	1	0	0	0	0	0	0	0	0
$\langle \rangle$	ergen is function by the manyor 2000 Processed during and forces under filled Agreement Bas 20	- Programme Disability							Dirw Millio	ITIMENTO DI TRGEGNE MATICA E GERTIONALE
ebruary 12, 2	021			Kickoff N	/leeting – Roma –[I	Daniele Nard	i]		Usav Usav	PIENZA ORBITA DE HOMA

7

Task 9.7 – Integrated System Field Validation [M41-M48]

(Leader: UNIROMA3)

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	5	2	4	2	4	4	2	18	1	0

Kickoff Meeting – Roma – [Daniele Nardi]

8

February 12, 2021

Deliverables

D9.1: Robotic Navigation and Coordination Field ValidationDelivery Month: M33This deliverable will be composed of a report along with a video describing the validation of the robotic
functionalities as per Tasks 9.1 and 9.5, including navigation, and box-exchange manoeuvring.

 D9.2: Validation of Human-Robot Interaction
 Delivery Month: M42

 This deliverable will be composed of a report along with a video describing the validation of the human-robot interaction functionalities during harvesting and pruning as per Tasks 9.2, 9.3 and 9.4.

 D9.3: Human-Multi-Robot Task Planning Field Validation
 Delivery Month: M42

 This deliverable will be composed of a report along with a video describing the validation of the humanmulti-robot task planning functionalities as per Task 9.6.

D9.4: Final Demo

Delivery Month: M48

This deliverable will be composed of a report along with a video describing the outcome of the final demo with respect to the CANOPIES objectives KPIs as per Task 9.7.

and the second second

February 12, 2021

Kickoff Meeting – Roma – [Daniele Nardi]

Milestones

# Mil.	Description	Related WP(s)	Due Date	Means of verification
MS1	All technical specifications finalised	WP2	M6	Deliverable D2.1
MS2	First Release of Farming and Logistic Robot Prototypes	WP3	M14	Deliverable D3.2
MS3	Final Release of the VR Farming Environment	WP[3,4,5,6,7,8]	M25	Software Released and Validated by a User Group
MS4	Robotic Navigation and Coordination Field Validation	WP9	M33	Deliverable D9.1
MS5	Human-Robot Interaction: Safety and Communication	WP5, WP6	M36	Deliverables D5.2, D6.2
MS6	Human-Robot Collaboration: Planning in Agreement, Task Planning	WP6, WP8	M36	Deliverables D6.1, D8.1
MS7	Experimental validation of the integrated system with respect to the pilot scenario	WP9	M48	Deliverable D9.4

The amount is builded by the theorem 2000 Procession Program and the company linear and their Agreement for 1910 (1990)

10

Kickoff Meeting - Roma - [Daniele Nardi]

Critical Activities (next 12 Months)

- Farm site set-up
- Data Acquisition Campaigns

Kickoff Meeting – Roma – [Daniele Nardi]

CANDPI,

```
11
```

Technical Discussion

- Farm site set-up:
 - Arrange a working area indoor and wireless network connectivity
 - Equipment storage
 - Determine CANOPIES experimental area
 - Finalize logistics for site visits: food and accommodation details ...
- Availability of sensors and mobile base for the Data Acquisition Campaigns

February 12, 2021

12

INTERNETIO DE PRODUCERA JULICIÓNATICO TOMATICA E OFFICINAVE ANDORIO INTERE 13

Kickoff Meeting - Roma - [Daniele Nardi]

Coordination and Planning of Activites

- Meetings in connection with WP3 and 4, late spring to plan data acquisition campaigns
- Monthly meetings to measure the status of achievement of the WP
- The leading unit of each task is responsible for its timely completion
- The leading unit of each task is responsible for the drafting of the related deliverable (all involved units must contribute)
- The leading unit of the WP is responsible for communicating with the PI in the case of difficulties

Kickoff Meeting - Roma - [Daniele Nardi]

February 12, 2021

Let's move on to the next WP...

INTERNET DE PROCESSERIA INFORMATICA IOMATICA E GERTIONAUE ANO OBIO BURIOR

14

METIMONTO DI PRGEGNERIA INFORMATICA DMATICA E GERTIORAGE AND ORIO IU/JUDI

13

SAPIENZA

February 12, 2021

A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems

WP10 - Dissemination and Promotion of the Exploitation

WP10 - Dissemination and Promotion of the Exploitation. Objectives

- Create **visibility** of the project and provoke **dissemination** to the general public and other relevant stake holders affected by the outcome of the project.

- Ensure **technical and scientific dissemination** of the results towards research institutions, public and private health entities and public and private companies.

- Set up a web platform for **communication**. This site and connections to social media will be the basis for disseminating and sharing knowledge between as well as among project partners and external participants.

- Promote the results of project.
- Review the innovations within the project and if necessary, protect the information.

- Advise the target industries of the achievements and ensure the direction of the project is likely to lead to commercially relevant results within the areas of application.

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Tasks' structure[M1-M48]

Task 10.1 – Website Construction and Updates (Leader: UPC)

Task 10.2 - Dissemination (Leader: UPC)

- a) Dissemination in the scientific community
- b) Industry and end users
- c) Academic Dissemination

Task 10.3 – Dissemination and Synergies with DIH-agROBOfood (Leader: UNIROMA3)

- Task 10.4 Communication Activities and Event (Leader: UPC)
- Task 10.5 Exploitation and Management of Knowledge (Leader: PAL)

Tasks' PMs.

Partner	UNIROMA3	ктн	UNIROMA1	UPC	UNICLAM	DTI	PALEBLUE	PAL	AGRIM.	RSA
РМ	12	2	4	12	4	2	2	8	3	0

4

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

Deliverables

D10.1: Project Website Leader: UPC Delivery Month: M2

This deliverable will consist in the publication of a website describing CANOPIES. The website will be regularly updated with the progress and achievements of the project.

D10.2: Data Management Plan	Leader: UPC	Delivery Month: M6
A Data Management Plan (DMP) will be produced detailing	what data the project will generate, whe	ether and how it will be exploited or
made accessible for verification and re-use, and how it will be	be curated and preserved. A first version	of the DMP will be issued at M0+6,
and the plan will evolve during the lifetime of the project in c	order to present the status of the project	's reflections on data management.

D10.3: Communication, Dissemination and	Loador: LIRC	Dolivory Month:	M2
Exploitation Plan	Leader. OFC	Delivery worth.	IVI S

This deliverable will consist in the project plan for the communication, exploitation and dissemination activities, including: i) the setting of the strategy and objectives of both the dissemination and exploitation activities; ii) the designing of the relevant policy and rules; iii) the management of these activities; iv) the identification of the target user groups as well as the media and means to be used; v) Exploitation activities for paving the way to GISCADOV solution Business Development. D10.3 has been designed according to the European Commission guidelines applying to H2020 projects.

The analysis build by the forces 200 from with fragment in the course base of the forces of the force of the forces of the force		UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH
February 12, 2021	Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]	5

Task 10.1 – Website Construction and Updates (UPC

Objectives:

- Project domains
 - canopies-project.eu
 - project-canopies.eu
- Website construction
 - External site for general public (Drupal)
 - Internal site for consortium members (NextCloud)
- Website updates. CANOPIES partners will prepare the information about their activities. UNIROMA3 and UPC will be in charge of the website and social media updates

6

Kickoff Meeting - Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

Comparison of the second water in the second water is a second s

8

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

February 12, 2021

Task 10.2 – Dissemination (UPC)

- b) Industry and end users
- c) Academic Dissemination

Important issues:

All the partners are strongly involved in the dissemination and communication activities in the local, national and international context.

Dissemination and Communication Instruments

- Website - Social networks (YouTube, Twitter, Linkedin, Facebook, Instagram) - Flyers and brochures - Mass media -

Participation to Fairs / Events / Open days – Industrial and End User partners, EU booth

Professional video - Supported by all the partners

Task 10.3 – Dissemination and Synergies with DIH-agROBOfood (UNIROMA3)

- We have already established a communication channel through DTI, who is also part of the agROBOfood consortium.
- We have been planning on the following actions:
 - Participation and presentation of CANOPIES on the annual agROBOfood summit, currently planned as an online event in April.
 - Potential presentation of CANOPIES on the European Robotics Forum (ERF) workshop proposed by agROBOfood partners.
 - Companies in our consortium can become business members of agROBOfood.
 - The consortium will also try to connect with DIH Smart Agri Hubs.
 - Once a communication channel is created, we will also try to achieve similar actions.

Kickoff Meeting – Danish Technological Institute- [Tsampikos Kounalakis]

Task 10.4 – Communication Activities and Event

	OBJECTIVES	TARJETED PUBLIC	ABOUT	INSTRUMENTS
	TO COMMUNICATE			*WEBSITE &*SOCIAL MEDIA
	TO INFORM TO PROMOTE	SCIENTIFIC COMMUNITY	CONSORTIUM ACTIVITIES PROJECT SCIENTIFIC RESULTS	*PEER REVIEW PAPERS ACCEPT *SCIENTIFIC WORKSHOPS ORG.
	INCREASE VISIBILITY INCREASE AWARENESS on how robotics and IT	FARMERS, FORUMS AND ASSOCIATIONS: TABLE-GRAPE & PERMENENT CROPS	THE POTENTIAL TO IMPROVE AGRICULTURAL OPERATIONS BY ROBOTICS	*PRESS RELEASE *ARTICLES *ENTRY IN ASSOC.MAILING LISTS *INT. PUBLIC MEETINGS
DISSEMINATION	technology has the potential to improve agricultural	AGRICULTURAL HIGH SCHOOLS AND UNIVERSITIES		*SEMINARS HELD (AGR.SCHOOLS)
	operation while being at the same time more	INDUSTRY IN NATIONAL TECH /INN CLUSTERS	PROJECT INDUSTRIAL RESULTS	BRANDING, FLYERS, BROCHURES EC-SUPPORTED MECHANISM
	sustainable and environmentally friendly	NATIONAL ORGANIZATION FOR IND/RES DEVELOPM.		MASS MEDIA: LOCAL, REGIONAL AND NATIONAL *PRESS RELEASE
INTERNAL COMMUNICATION	MAILING LIST NETWORKING ACTIVITIES > INTEGRATION WEEKS	GOV. BODIES – ENV. ORG – GENERAL UNIVERSITY AND HIGH SCHOOLS – GEN. PUBLIC		POPULAR SCIENCE AND TECH *PARTICIPATION TO FAIRS/EVENTS/OPENDAYS
173				*KPIS UNIVERSITAT POLITECN DE CATALUNYA

February 12, 2021

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

11

Task 10.4 – Communication Activities and Event (UPC). *Key Performance Indicators -KPIs

			1	1
Venue	Indicator	Poor	Good	Excellent
Website	#of visits	<1000	1000-5000	>5000
Social media	#of followers	<50	50-100	>100
Scientific				
publications	#of peer reviewed papers accepted	<15	15-25	>25
Scientific workshops	#of scientific workshops organized	<1	1-2	>3
Agricultural schools	#of seminars held	<3	3-6	>6
	# of press release + # of article in bulletin/magazines +			
Table-Grape Farmer's	#entry in associations mailing lists + #of intervention to			
associations	public meetings	<5	5-10	>10
	# of press releases + # of articles in bulletins/magazine +			
Permanent Crops	#entries in associations mailing lists + #of interventions in			
Farmer's Association	public meetings	<2	2-4	>4
	#of appearance on mass media of regional or national			
Mass Media	relevance	<2	2-5	>5
Popular Science	#of appearance on popular science media	<1	1-3	>3

NOP

11

February 12, 2021

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

Task 10.5 – Exploitation and Management of Knowledge (PAL) [M1-M48]

Contributors: all (Industrial partners are the main contributors)

- The exploitation of the knowledge generated in this project will be carried out along three lines:
 - Scientific Exploitation (academic partners): re-use of the methodological outcomes for future research and projects, advancement in the visibility
 - Economic Exploitation (industrial partners): creating new opportunities to expand its own business
 - PAL: to develop robots for outdoor applications and to develop new services for the agricultural field.
 - PALEBLUE: to move into the new business segment within agriculture using the simulation tools.
 - Societal Exploitation: the Consortium will contribute to promote, especially in the new generations of agricultural operators, a positive vision of the role of automation in agriculture.

 \rightarrow Plan for Using and Disseminating Foreground (PUDF) that will generate the guidelines for the future use of the project's results, included on D10.3: Communication, Dissemination and Exploitation Plan (M3)

Kickoff Meeting – Pal Robotics SL

13

Task 10.4 – Communication Activities and Event

WP10 OVERVIEW (Draft February 4 th)			2021 2022					022		
WP10 TASKS		1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	
T. 10.1	Website Construction and Updates	CANOPIES AFTER EACH DELIVERABLE THE RESPONSIBL WEB AND UPC WILL UPDATE TH			BLE WILL PREPARE A SHORT NOTE ABOUT IT. UNIROMA HE WEB SITE WITH THIS INFORMATION.					
T. 10.2	Dissemination Scientific community /UNIROMA3-UPC Participation in scientific conferences		ERF 13/04 ICRA Xi'An, China	IROS Prague, Czech Republic		ERF WORKSHOP	ICRA		IROS	
	Industry /PAL-PALEBLUE-DTI 1 ACTIVITY/YEAR		ALMERIA INTERNATIONAL FORUM SMART OF AGRICULTURE AGRIHUB ROBOTICS							
	End users / AGRIMESSINA 1 ACTIVITY/YEAR		agROBOfoo d summit April Virtual							
	Academic dissemination. Web and Press notes	ACADEMIC PUBLICATIONS DURING THE PRO This dissemination will include presentations in			DJECT. PLEASE INFORM UNIROMA3 AND UPC seminars, summer schools and academic events					
	General Public /Popular science / Open days			Science Fest						
T. 10.3	Dissemination and Synergies with DIH-agROBOfood	Companies in our consortium can become business members of agROBOfood. Contacts with DIH Smart Agri Hubs								
T. 10.4	Communication Activities and Events		COORDINATION UNIROMA3 AND				TION ALL PART	NERS		
	Corporative image, Press releases, Social media	SM ACCOUNTS	SM FLYERS ACCOUNTS POSTERS							
T 10 5	Evaluation 9 management of knowledge									

February 12, 2021

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

Task 10.4 – Communication Activities and Event (UPC)

16-18	19-21 1st REVIEW	22-24
	1st REVIEW	
D6.4		
	D7.1	D7.3
	INT WEEK	

February 12, 2021

of the formation of the second field of the second field of the

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]

15

overview (Brait rebruary 4)		20	21			20	22	ALC: N
PARTNERS CONSTRIBUTION	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24
Università degli Studi Roma Tre	KoM PRESS RELEASE	D1.1 NOTE					1st REVIEW	
KTH Royal Institute of Technology				D2.3 - D2.4 NOTE				
Sapienza Università di Roma			D3.4 NOTE	D3.1 NOTE	D3.2 NOTE			
Universitat Politècnica de Catalunya		D10.1 NOTE		D4.3 NOTE	ERF 90' Workshop All Partners			
Università degli studi di Cassino e del Lazio Meridionale					D5.4 NOTE			
Danish Technological Institute	D2 agROBOfood ERF Wo Present	2.2 d Summit & orkshop tations				D6.4 NOTE		
PaleBlue AS							D7.1 NOTE	D7.3
Pal Robotics SL	ASA-Presentation Agri food & robotics ERF Workshop coordination Robotics & Agri Food		sentation Agri & robotics Workshop rdination & Agri Food					
Agrimessina Srl	validation Tasks: 9.1-9.7						INT WEEK	
RSA Srl								

0 OVERVIEW (Draft February 4 th)	2021						22	40	8
PARTNERS CONSTRIBUTION	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	-
Università degli Studi Roma Tre	KoM PRESS RELEASE	D1.1 NOTE			P		1st REVIEW		st (
KTH Royal Institute of Technology			A	D2.3 - D2.4 NOTE	/	E			
Sapienza Università di Roma			D3.4 NOTE	D3.1 NOTE	D3.2 NOTE	5			
Universitat Politècnica de Catalunya		D10.1 NOTE		D4.3 NOTE	ERF 90' Workshop All Partners				
Università degli studi di Cassino e del Lazio Meridionale		+ /			D5.4 NOTE		1 7		
Danish Technological Institute	D2 agROBOfood ERF Wo Presen	2.2 d Summit & orkshop tations		Ó	()	D6.4 NOTE	101		
PaleBlue AS		-		0	2		D7.1 NOTE	D7.3	
Pal Robotics SL	ASA-Preser food & ERF Wo coordi Robotics &	ntation Agri robotics orkshop nation Agri Food	PO	Y	/	40°	1 de		
Agrimessina Srl		validation T	asks: 9.1-9.7				INT WEEK		
RSA Srl				2	LUL				
									AT

Coordination and Planning of Activities

• Communication and dissemination plan overview 2021-2024.

D10.3 (M3)

Contact with your communication responsible during next WEEK

- The partners are encouraged to actively contribute to the communication and dissemination plan with their own teams and share information with UNIROMA3 and UPC. >1 contribution / three months/partner
- UPC will coordinate a virtual meeting each three months looking to monitor, update, increase and improve the previous plan.

18

Let's move on to the next WP...

Any questions

Kickoff Meeting – Universitat Politècnica de Catalunya - [Alberto Sanfeliu, Ana Puig-Pey]