PhD Thesis

Task-oriented viewpoint planning for free-form objects

Work default illustration


  • Started: 01/09/2008
  • Finished: 28/07/2016


This thesis deals with active sensing and its use in real exploration tasks under both scene ambiguities and measurement uncertainties. While object modeling is the implicit objective of most of the active sensing algorithms, in this work we have explored new strategies to deal with more generic and more complex tasks. Active sensing requires the ability of moving the perceptual system to gather new information. Our approach uses a robot manipulator with a 3D Time-of-Flight (ToF) camera attached to the end-effector. For a complex task, we have focused our attention on plant phenotyping. Plants are complex objects, with leaves that change their position and size along time. Valid viewpoints for a certain plant are hardly valid for a different one, even belonging to the same species. Some instruments, such as chlorophyll meters or disk sampling tools, require being precisely positioned over a particular location of the leaf. Therefore, their use requires the modeling of specific regions of interest of the plant, including also the free space needed for avoiding obstacles and approaching the leaf with tool. It is easy to observe that predefined camera trajectories are not valid here, and that usually with one single view it is very difficult to acquire all the required information.

The overall objective of this thesis is to solve complex active sensing tasks by embedding their exploratory goal into a pre-estimated geometrical model, using information-gain as the fundamental guideline for the reward function. The main contributions can be divided in two groups: first, the evaluation of ToF cameras and their calibration to assess the uncertainty of the measurements; and second, the proposal of a framework capable of embedding the task, modeled as free and occupied space, and that takes into account the modeled sensor’s uncertainty to improve the action selection algorithm. This thesis has given rise to 14 publications, including 5 indexed journals, and its results have been used in the GARNICS European project.

The complete framework is based on the Next-Best-View methodology and it can be summarized in the following main steps. First, an initial view of the object (e.g., a plant) is acquired. From this initial view and given a set of candidate viewpoints, the expected gain obtained by moving the robot and acquiring the next image is computed. This computation takes into account the uncertainty from all the different pixels of the sensor, the expected information based on a predefined task model, and the possible occlusions. Once the most promising view is selected, the robot moves, takes a new image, integrates this information into the model, and evaluates again the set of remaining views. Finally, the task terminates when enough information is gathered. In our examples, this process enables the robot to perform a measurement on top of a leaf. The key ingredient is to model the complexity of the task in a layered representation of free-occupied occupancy grid maps. This allows to naturally encode the requirements of the task, to maintain and update the belief state with the measurements performed, to simulate and compute the expected gains of all potential viewpoints, and to encode the termination condition.

During this work the technology of ToF cameras has incredibly evolved. Nowadays it is very popular and ToF cameras are already embedded in some consumer devices. Although the quality of the measurements has been considerably improved, it is still not uniform in the sensor. We believe, as it has been demonstrated in various experiments in this work, that a careful modeling of the sensor’s uncertainty is highly beneficial and helps to design better decision systems. In our case, it enables a more realistic computation of the information gain measure, and consequently, a better selection criterion.

The work is under the scope of the following projects:

  • PAU: Percepción y acción ante incertidumbre (web)
  • SGR ROBÒTICA: Grup de recerca consolidat - Grup de Robòtica (web)
  • GARNICS: Gardening with a cognitive system (web)
  • PAU+: Perception and Action in Robotics Problems with Large State Spaces (web)