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Abstract In this paper a kinematic analysis is presented for slider-cranks
derived from the λ-mechanism. In particular, for this linkage the coupler
curves traced by a reference point are Berard curves. By properly choosing
the design parameters of the mechanism the coupler curves are represented
by quartics, which have been identified and classified.
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1 Introduction

Planar mechanisms are widely used in industrial environment for automatic
machinery in order to give prescribed law of motions. They can be referred
as Function Generators from the input to the output links, Rigid Body Guid-

ance through the study of the rigid coupler motion and Path Generators by
referring to the coupler curve, as extensively reported in [?] to [?]. This paper
deals with the analysis of slider-cranks derived from the λ-mechanism, which
can be used to give suitable coupler curves for application in automatic ma-
chinery, providing some constraints, such as the region in which the curve
should be contained, or geometrical characteristics of the curve. Given a set
of tasks constituting functional requirements, the design process consists in
producing a mechanism that will meet all the specifications. Sometimes, for
industrial applications, a first requirement deals with the definition of a suit-
able working area in which the mechanism should produce a given trajectory.
This can be due to physical limits, or actuation constraints. Then a designer
should select a shape of the path and other constraints, which can be linked to
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design parameters of the mechanism and constitute the design problem deal-
ing with precision points, or given trajectory, or rigid body motion. Following
this idea we propose design guidelines focusing on a slider-crank derived from
the λ-mechanism [?]. In particular, it has been shown that this slider-crank
has a practical engineering interest since it can better approximate a straight
line than the corresponding 4-bar λ-mechanism [?].

2 Position Analysis of the Slider-Crank and Coupler

Curves Expression

The first analytical investigation for a coupler curve of a four-bar linkage was
undertaken by Prony [?], who analyzed Watt’s straight-line motion (1796).
Samuel Roberts showed in 1876 that the ”three-bar curve” (coupler curve)
of the four-bar linkage is an algebraic curve of the sixth order [?]. Cayley
gave further properties of the curve. His interest was directed to linkages
hypothetically able to generate specific algebraic curves of any order [?]. In
general, the more links, the higher is the degree of curve generated. Since a
curve can have up to as many intersections with a straight line as the degree
of its polynomial expression, it is hypothetically possible to generate (or
approximate) any trajectory designing a suitable mechanism. In this contest
we focus our attention on slider-cranks that in general have fourth order
coupler curves. The equation of the coupler point curve for any slider-crank
mechanism may be obtained by analytic geometry being the loci of any point
P that belongs to a segment for which a point B is constrained to lie on
a circle and another point C is constrained to have a linear trajectory. In
the following we restrain the attention on a particular slider-crank for which
point P lies on the same line of the coupler link, as shown in the scheme
of Fig. ??. It is known as a λ-mechanism [?]. The derivation presented here
follows that of Samuel Roberts proposed for a 4-bar linkage [?]. The equation
can be written in Cartesian coordinates, when the X axis is chosen along
the line parallel to the slider, without loss of generality. Let (x, y) (s, e) be,
respectively, the coordinates of coupler point P and point C, then

[

s

e

]

=

[

x+ (a3 + w)cos(θ3)
y + (a3 + w)sin(θ3)

]

(1)

Since B describes a circle (or arc of a circle) centered in O with ‖OB‖2 = a2
2

‖OB‖2 = (x+ wcosθ3)
2 + (y + wsinθ3)

2 (2)

Let us take the second equation from ?? and ??. The coupler curve can
be obtained by eliminating θ3 from equations ?? and ??.

y − e+ (w + a3)sinθ3 = 0 (3)
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Fig. 1 A kinematic scheme of a slider-crank derived from λ-mechanism with design pa-
rameters.

x2 + y2 + w − a2
2
+ (2xw)cosθ3 + (2yw)sinθ3 = 0 (4)

Let us consider the half-tangent substitution in ?? and ?? as

cos
θ3

2
=

1− u2

1 + u2
, sin

θ3

2
=

2u

1 + u2
, (5)

The coupler curve f of the slider-crank can be described by the algebraic
equation of fourth-order in the form

f = (a3 − w)2y4 + (a3 + w)2x4 + 2(a2
3
+ w2)x2y2 + 4we(a3 − w)y3 +

+4we(a3 − w)x2y + [−2(a3 + w)2(a23 + w2) + 4w2e2]x2 +

+[−2(a2
3
− w2)(a2

2
− w2) + 4w2e2]y2 − 4we(a2

2
− w2)(a3 + w)+ (6)

+(a3 + w)2(a2 − w)2(a2 + w)2

f is symmetric with respect to the Y axis. This can be proved since Eq. ??
contains only even powers of x.

3 Characterization of the coupler curve

In general, a singularity is a point at which an equation, curve, or surface,
becomes degenerate. Singularities are often called singular points or geometric
singularities [?]. Real geometric singularities of the coupler curve of a slider-
crank can be found considering f together with its partial derivatives fx and
fy with respect to x, and y respectively. The zeros of the set of equations:
f = 0, fx = 0 and fy = 0 gives the geometric singularities of the coupler
curve. They can be identified as
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xs = 0; ys =
−ew ±

√

w4 + (e2 − a2
3
− a2

2
)w2 + a2

2
a2
3

a3 − w
(7)

Equation ?? can be used to identify geometric singularities of the coupler
curve and can be further used to derive kinematic considerations. It is evident
from eqs.?? that singularities for this slider-crank may arise on the Y -axis
only. Points belonging to these zeros are denoted by Ci, Di, and Ai, when Ci

indicates cusps, Di double points and Ai acnodes. They can be classified by
considering the second partial derivatives of f in the form ??

g = f2

xy − fxx − fyy (8)

Functions g, fx and fy, can be used to fully characterize real geometric sin-
gularities of the coupler curve. They can be related to a classical problem
in linkages design known as a ”branch defect”. In particular, the presence
of singularities gives information on the number of branches of the coupler
curve, furthermore it allows the determination if two task positions lie on the
same branch, as described in [?].

Equations ?? to ?? lead to a further investigation on the coupler curves
characteristics by giving an enumeration of quartic equations representing
the trajectory traced by the P reference point. In particular, we focus our
attention on quartics studied by Berard in 1820 and then by Ruiz-Castizo in
1889. The coupler curve of a slider-crank derived from a λ-mechanism can
be represented by Berard curves [?]. In particular they become ”egg shaped”
curves if the eccentricity is equal to zero. Furthermore, by properly choosing
design parameters, these curves can be identified as well known quartics. In
the following we investigate the properties of the coupler curves and their
special cases.

-Quartics of Bernoulli (1687):
the curve traced by a coupler reference point P of a λ-slider-crank can be
represented by Bernoulli quartics if the following conditions are met: w = a3
and e = 0. The coupler curves in ?? then become

x4 + x2y2 − 2(a22 + a23)x
2 + (a2 + a3)

2(a2 − a3)
2 = 0 (9)

Quartics in ?? can be always represented by two affinely finite branches, as
it can be proven they are free of geometric singularities. Examples of coupler
curves representing Bernoulli quartics are shown in Fig.??a).Furthermore if,
additionally, a3 = a2 Eq. ?? degenerates into a circle centered in the (0;0)
with radius equal to 2a2, as it is shown in ??a).

-Quartics of Ruiz-Castizo:
the curve traced by a coupler reference point P of a λ-slider-crank can be
represented by Ruiz Castizo quartics if the following conditions are met:
a3 = a2 + e and w = a3. The coupler curves in ?? can be expressed as ??.
Quartics in ?? can be always represented by one connected component, as
the existence of geometric singularities can be proven.
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x4 + x2y2 − (4a2
2
+ a2e+ e2)x2 + e2y2 + (4a2e

2 + 2e3)y +

+e2(4a22 + a2e+ e2) = 0 (10)

Examples of coupler curves representing Ruiz-Castizo quartics are shown in
Fig.??b). In particular, geometric singularities are given by

xs = 0; ys = −(2a2 + e) (11)

Singular point given in Eq.?? and Fig. ??b) is a cusp, since g in ?? is equal
to zero. In addition, the curve in ?? degenerates if e = −a2. If e = 0 Eq.??
is a circle centered in the origin with radius equal to 2a2, as shown in Fig.
??b). -Lemniscate:
the curve traced by a coupler reference point P of a λ-slider-crank can be
represented by lemniscate if the following condition is met: e ≥ a3 − a2. It
can be always represented by one connected component, as the existence of
geometric singularities can be proven. Examples of coupler curves represented
by lemniscates are shown in Fig.??a). Geometric singularities are given by

xs = 0; ys = −(2a2 + w); ys =
a2w + a2a3 − w2 − a3w

a3 − w
(12)

If a2 = a3 = e = w, then the curve in ?? then become

x4 + y2w2 + x2y2 − 3w2x2 = 0 (13)

-Cardano motion:
the curve traced by a coupler reference point P of a λ-slider-crank can be
represented by Cardano motion if the following condition is met: a2 = a3 and
e = 0.

[x2 + y2 − (a2 + w)2][(a2 + w)2x2 + (a2 − w)2y2 + (a2
2
− w2)2] = 0 (14)

In this case the coupler curves are obtained by the union of a circle and
an ellipse, as shown in Fig.??b. Major semi-axis of the ellipse is on Y axis
(X axis) if w is greater (less) than a2. If additionally w = a2 then the
coupler curve represented by the ellipse degenerates into a circle. Geometric
singularities of the curve are given by ys = ±(a3+w), xs = 0. They are cusps.

4 Design Guidelines

The boundary curve of a family can be obtained by considering the equa-
tion of the family together with the derivative of the family with respect to
the parameter. In particular, in the following coupler curves equation in ??
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a) b)

Fig. 2 Examples of Bernoulli quartics in a) and Ruiz-Castizo quartics in b).

a) b)

Fig. 3 Examples of lemniscates in a) and Cardano motion curves in b).

is considered, taking as a parameter of the family the eccentricity and cou-
pler length, respectively, as shown in the numerical examples shown in Figs.
?? and ??. If one considers eccentricity as the family parameter, then the
equation of the boundary curve becomes, (when a3 is different from −w,w

different from 0)

(w2 + 2a2w + a22 − x2 − y2)(w2 − 2a2w + a22 − x2 − y2) = 0 (15)

If one considers a3 as the family-parameter, then the equation of the boundary
curve becomes, (when w is different from 0)

(w2 + 2a2w + a2
2
− x2 − y2)(w2 − 2a2w + a2

2
− x2 − y2) = 0 (16)
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According to the above-mentioned considerations, design guidelines of a
slider-crank can be given in terms of shape and characteristics of the coupler
curves as follows:

1. define limits for y and x in the plane of motion, say xmax, xmin, ymax,
ymin;

2. evaluate design parameters in Eqs ?? and ??;
3. the family parameter can be chosen according to other design specifica-

tions.

In particular, in this context we can generate any symmetrical egg shaped
path giving overall size of the curve in the plane of motion OXY , being
characterized for example to have a coupler point with stationary curvature,

a) b)

Fig. 4 Boundary curve and family curve of e parameter when a2 = 100, a3 = 400, w = 200
in a) and an example of designed slider-crank with e = −100.

a) b)

Fig. 5 Boundary curve and family curve of a3 parameter when a2 = 120, e = 150, w = 270
in a) and an example of a designed slider-crank with a3 = 520.
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when a suitable reference point P is chosen along the coupler link BC, as
belonging to the cubic of stationary curvature C. In fact, for the crank angle
θ2 = 0, the cubic of stationary curvature degenerates in a φ-curve, as reported
in [?]. Moreover, when P is chosen as coincident with the inflection pole J ,
or in general on the inflection circle, an approximate straight line can be also
obtained, as reported in [?].

5 Conclusion

By studyng the kinematics of slider-cranks derived from λ-mechanism giving
the coupler curve described by a fourth-order polynomial, this paper provides
interesting characteristics processed by the classical slider-crank linkage when
parameters of the mechanism are properly chosen. In particular, the coupler
curve traced by a reference point of the coupler can be represented by quar-
tics of Bernoulli, quartics of Ruiz-Castizo, lemniscate and producing Cardano
motion. Furthermore, in this paper singularities of the coupler curve are in-
vestigated.
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