Design method for a reconfigurable mechanism for finger rehabilitation

Conference Article


IASTED International Conference on Robotics and Applications (RA)





Doc link


Download the digital copy of the doc pdf document


Projects associated


This paper presents a design method for a reconfigurable single degree-of-freedom mechanism for robotic assisted finger therapy following a stroke. The mechanism is a four-bar linkage that in combination with variable link lengths is capable of reproducing a power grasp finger motion for a wide variety of finger sizes. This is accomplished through an optimization procedure that determines the parameters of the four-bar linkage needed to fit the sampled range of finger trajectories. The linkage is located behind the hand and attaches to the medial phalanx of the finger just above the distal interphalangeal joint. In addition, the mechanism is designed so that it does not interfere with finger motion and so that the subject‘s fingertips and palm are free to touch real objects and experience tactile feedback. In future implementations, the mechanism could be used for a single finger or in parallel with other similar mechanisms to exercise multiple fingers simultaneously. Although the specific application presented here is the four-bar mechanism and finger power grasp motion, the developed design methods may be applied to a much broader range of mechanisms and applications where scalability for human-machine interface is required.


medical robotics, robot kinematics.

Author keywords

rehabilitation robotics, design optimization, mechanism design

Scientific reference

D. Sands, A. Perez, J. McCormack and E.T. Wolbrecht. Design method for a reconfigurable mechanism for finger rehabilitation, 15th IASTED International Conference on Robotics and Applications, 2010, Cambridge, Massachussetts, USA, pp. 1-8.