Publication

Generalized planning with positive and negative examples

Conference Article

Conference

AAAI Conference on Artificial Intelligence (AAAI)

Edition

34th

Doc link

https://arxiv.org/abs/1911.09365

File

Download the digital copy of the doc pdf document

Abstract

Generalized planning aims at computing an algorithm-like structure (generalized plan) that solves a set of multiple planning instances. In this paper we define negative examples for generalized planning as planning instances that must not be solved by a generalized plan. With this regard the paper extends the notion of validation of a generalized plan as the problem of verifying that a given generalized plan solves the set of input positives instances while it fails to solve a given input set of negative examples. This notion of plan validation allows us to define quantitative metrics to asses the generalization capacity of generalized plans. The paper also shows how to incorporate this new notion of plan validation into a compilation for plan synthesis that takes both positive and negative instances as input. Experiments show that incorporating negative examples can accelerate plan synthesis in several domains and leverage quantitative metrics to evaluate the generalization capacity of the synthesized plans.

Categories

generalisation (artificial intelligence), learning (artificial intelligence), planning (artificial intelligence).

Scientific reference

J. Segovia, S. Jiménez and A. Jonsson. Generalized planning with positive and negative examples, 34th AAAI Conference on Artificial Intelligence, 2020, New York, USA, to appear.