Publication

Robust data-driven leak localization in water distribution networks using pressure measurements and topological information

Journal Article (2021)

Journal

Sensors

Pages

7551

Volume

21

Number

22

Doc link

https://doi.org/10.3390/s21227551

File

Download the digital copy of the doc pdf document

Authors

Projects associated

Abstract

This article presents a new data-driven method for locating leaks in water distribution networks (WDNs). It is triggered after a leak has been detected in the WDN. The proposed approach is based on the use of inlet pressure and flow measurements, other pressure measurements available at some selected inner nodes of the WDN, and the topological information of the network. A reduced-order model structure is used to calculate non-leak pressure estimations at sensed inner nodes. Residuals are generated using the comparison between these estimations and leak pressure measurements. In a leak scenario, it is possible to determine the relative incidence of a leak in a node by using the network topology and what it means to correlate the probable leaking nodes with the available residual information. Topological information and residual information can be integrated into a likelihood index used to determine the most probable leak node in the WDN at a given instant k or, through applying the Bayes’ rule, in a time horizon. The likelihood index is based on a new incidence factor that considers the most probable path of water from reservoirs to pressure sensors and potential leak nodes. In addition, a pressure sensor validation method based on pressure residuals that allows the detection of sensor faults is proposed.

Categories

automation.

Author keywords

water distribution networks, leak localization, data-driven

Scientific reference

D. Alves, J. Blesa, E. Duviella and L. Rajaoarisoa. Robust data-driven leak localization in water distribution networks using pressure measurements and topological information. Sensors, 21(22): 7551, 2021.