Reliable fault-tolerant model predictive control of drinking water transport networks

Journal Article (2016)


Control Engineering Practice





Doc link


Download the digital copy of the doc pdf document


This paper proposes a reliable fault-tolerant model predictive control applied to drinking water transport networks. After a fault has occurred, the predictive controller should be redesigned to cope with the fault effect. Before starting to apply the fault-tolerant control strategy, it should be evaluated whether the predictive controller will be able to continue operating after the fault appearance. This is done by means of a structural analysis to determine loss of controllability after the fault complemented with feasibility analysis of the optimization problem related to the predictive controller design, so as to consider the fault effect in actuator constraints. Moreover, by evaluating the admissibility of the different actuator-fault configurations, critical actuators regarding fault tolerance can be identified considering structural, feasibility, performance and reliability analyses. On the other hand, the proposed approach allows a degradation analysis of the system to be performed. As a result of these analyses, the predictive controller design can be modified by adapting constraints such that the best achievable performance with some pre-established level of reliability will be achieved. The proposed approach is tested on the Barcelona drinking water transport network.


control system synthesis, control theory, optimisation, predictive control.

Author keywords

fault-tolerance evaluation, model predictive control, actuator-fault configurations, structural analysis, reliability, drinking water transport networks

Scientific reference

D. Robles, V. Puig, C. Ocampo-Martínez and L.E. Garza. Reliable fault-tolerant model predictive control of drinking water transport networks. Control Engineering Practice, 55: 197-211, 2016.