3D CNNs on distance matrices for human action recognition

Conference Article


ACM Conference on Multimedia (MM)





Doc link


Download the digital copy of the doc pdf document


In this paper we are interested in recognizing human actions from sequences of 3D skeleton data. For this purpose we combine a 3D Convolutional Neural Network with body representations based on Euclidean Distance Matrices (EDMs), which have been recently shown to be very effective to capture the geometric structure of the human pose. One inherent limitation of the EDMs, however, is that they are defined up to a permutation of the skeleton joints, i.e., randomly shuffling the ordering of the joints yields many different representations. In oder to address this issue we introduce a novel architecture that simultaneously, and in an end-to-end manner, learns an optimal transformation of the joints, while optimizing the rest of parameters of the convolutional network. The proposed approach achieves state-of-the-art results on 3 benchmarks, including the recent NTU RGB-D dataset, for which we improve on previous LSTM-based methods by more than 10 percentage points, also surpassing other CNN-based methods while using almost 1000 times fewer parameters.


pattern recognition.

Author keywords

3d convolutional neural networks, activity recognition, deep learning, human action recognition

Scientific reference

A. Hernandez Ruiz, L. Porzi, S. Rota and F. Moreno-Noguer. 3D CNNs on distance matrices for human action recognition, 25th ACM Conference on Multimedia, 2017, Mountain View, CA. USA., pp. 1087-1095.